放大器噪声分析计算

1.运放噪声模型

运放构成的同相放大器的噪声模型如下
这里写图片描述
运放的噪声主要由三部分组成,运放电压噪声,运放电流噪声,和反馈电阻产生的热噪声。三者有效值的平方和再开根号就是总噪声的有效值。现代运放的电流噪声非常小,通常可以忽略不计。这些噪声经过放大器放大后出现在运放的输出中,放大系数称噪声增益。同相放大中,噪声增益和运放的信号增益都是 G = 1 + R 2 / R 1 G=1+R_2/R_1 G=1+R2/R1,但在反相放大中,噪声信号的路径仍是同相放大, G = 1 + R 2 / R 1 G=1+R_2/R_1 G=1+R2/R1,不等于信号增益。

2.运放噪声基础

有效值(RMS): 有效值是根据电流热效应来规定的,又称均方根值。
RMS = 1 n ( x 1 2 + x 2 2 + ⋯ + x n 2 ) RMS = 1 T 2 − T 1 ∫ T 1 T 2 [ f ( t ) ] 2 d t \text{RMS}=\sqrt{\frac{1}{n}(x_1^2+x_2^2+\cdots +x_n^2)}\\ \text{RMS}=\sqrt{\frac{1}{T_2-T_1}\int_{T_1}^{T_2}[f(t)]^2dt}\\ RMS=n1(x12+x22++xn2) RMS=T2T11T1T2[f(t)]2dt
噪声叠加原理:
在这里插入图片描述
即,有效值的平方具有线性可加性,因此可记 E p = U N 2 E_p=U_N^2 Ep=UN2,则 E p = E p 1 + E p 2 E_p=E_{p1}+E_{p2} Ep=Ep1+Ep2

引入 D E ( f ) = lim ⁡ Δ f → 0 E p Δ f D_E(f)=\lim_{\Delta f\to0}\frac{E_p}{\Delta f} DE(f)=limΔf0ΔfEp描述单位频率内噪声的大小,即噪声在各个频率处的分布密度,单位 n V 2 / Hz nV^2/\text{Hz} nV2/Hz,而 D U ( f ) = D E ( f ) D_U(f)=\sqrt{D_E(f)} DU(f)=DE(f) 称为噪声电压密度,单位 n V / Hz nV/\sqrt{\text{Hz}} nV/Hz 数据手册中给出的就是此值。由噪声的叠加原理,要计算某一频率区间内的噪声总值只需对噪声密度积分即可。
频段内噪声有效值 ( R M S ) = E P = ∫ f a f b D E ( f ) d f = ∫ f a f b D U 2 ( f ) d f 频段内噪声有效值(RMS)=\sqrt{E_P}=\sqrt{\int_{f_a}^{f_b}D_E(f)df}=\sqrt{\int_{f_a}^{f_b}D_U^2(f)df} 频段内噪声有效值(RMS)=EP =fafbDE(f)df =fafbDU2(f)df
噪声的RMS值再乘6就是噪声峰峰值,这个系数6来自高斯分布的 6 σ 6\sigma 6σ

运放的噪声特性
这里写图片描述
在器件的数据手册中,运放的噪声信息以噪声密度图的形式给出(如上图)即噪声的频谱。曲线分两个区间:闪烁噪声和宽白噪声。
(1)前面随着频率下降的部分称为闪烁噪声(flicker noise, 1/f 噪声),表达式是 D E ( f ) = C 2 f D_E(f)=\frac{C^2}{f} DE(f)=fC2,C是归一化到1Hz处的1/f噪声电压密度, C = e n f ∗ f 0 C=e_nf*\sqrt{f_0} C=enff0 e n f e_{nf} enf是1/f噪声频谱图上最小频率处噪声值, f 0 f_0 f0是1/f噪声频谱图上最小频率。
(2)曲线后面平直部分称为宽白噪声,表达式是 D E ( f ) = K 2 D_E(f)=K^2 DE(f)=K2,K为白噪声电压密度。
对此频谱积分得到1/f噪声和白噪声RMS值分别为 C ⋅ ln ⁡ f a f b C\cdot \sqrt{\ln \frac{f_a}{f_b}} Clnfbfa K f b − f a K\sqrt{f_b-f_a} Kfbfa

其中积分下界 f a f_a fa一般取0.1,低于这个频率的噪声一般认为是外界扰动(如温度变化),不再被考虑到电路噪声中。积分上界 f b f_b fb的近似计算公式为 f b = k 增益带宽积 电路闭环增益 f_b=k\frac{增益带宽积}{电路闭环增益} fb=k电路闭环增益增益带宽积。式中k为经验修正系数,它是由运放的低通效应引起的。普通放大器看做一个一阶滤波器,系数取1.57即可。
这里写图片描述
电阻的热噪声RMS的计算式子为 4 k T R ( f b − f a ) , K = 1.38 × 1 0 − 23 \sqrt{4kTR(f_b-f_a)},K=1.38\times10^{-23} 4kTR(fbfa) K=1.38×1023,T为环境温度(开尔文),R为电阻, f a , f b f_a,f_b fa,fb取值和上面相同。

3. 噪声计算工具

以opa842构成的10倍放大器为例。
首先从手册找出增益带宽积算出截止频率 f b f_b fb
这里写图片描述
f b = 200 10 ⋅ 1.57 = 31.4 M H z f_b=\frac{200}{10}\cdot 1.57=31.4MHz fb=102001.57=31.4MHz

接下来找出噪声参数(宽白噪声)
这里写图片描述
这两个值在手册的噪声频谱图中也有标出。

具体的计算可使用Bruce Trump的一款计算软件,它是个excel表。
下载地址:
链接: https://pan.baidu.com/s/127bnGMkuANfhHZGojgCrZQ?pwd=diw6
提取码: diw6

闪烁噪声(Flicker Noise)与白噪声计算:
这里写图片描述
选择Flicker Noise页,在左上角黄色格子依次填入闪烁噪声的值 20 n V / Hz 20nV/\sqrt{\text{Hz}} 20nV/Hz (100Hz处),以及白噪声的值 2.6 n V / Hz 2.6nV/\sqrt{\text{Hz}} 2.6nV/Hz 。都可以从下图读出。
这里写图片描述
右下角写频率区间: f 1 = f a = 0.1 Hz , f 2 = f b = 31.4 MHz f_1=f_a=0.1\text{Hz}, f_2=f_b=31.4\text{MHz} f1=fa=0.1Hz,f2=fb=31.4MHz。计算结果(RMS值)如下图,可见对于这个宽带运放,几乎所有的噪声都来自宽带白噪声(14.5 μ V \mu V μV),1/f噪声( 0.884 μ V 0.884\mu V 0.884μV)可忽略不计。一般对于带宽大于10KHz的系统,1/f噪声都可忽略。总噪声14.5 μ V \mu V μV再乘噪声增益10就是最后输出噪声。
注: 两个RMS值叠加要取均方和,不是直接相加,故白噪声对总噪声的贡献率接近100%。
这里写图片描述
运放总噪声计算:
和闪烁噪声计算类似,增加了电阻热噪声的计算。切换到Amplifier Noise页面,根据手册和电路搭建情况分别填写黄色格子中的值。从上到下依次为:信号源电阻、运放电压噪声密度(白噪声)、运放电流噪声密度(白噪声)、反馈电阻、温度(涉及电阻热噪声计算)。这里忽略1/f噪声,故不填写相关数据。
这里写图片描述
计算结果如下所示为 3.023 × 1 0 − 9 V / Hz 3.023\times 10^{-9}V/\sqrt{\text{Hz}} 3.023×109V/Hz
这里写图片描述
这个数再乘 31.4 MHz \sqrt{31.4\text{MHz}} 31.4MHz 就是运放输出的总电压噪声,约169微伏。可以看到主导噪声源是运放的电压噪声,电阻的热噪声也比较可观。

噪声分析的一些技巧

  1. 3倍忽略法则。如电压噪声是 3 n V / Hz 3nV/\sqrt{\text{Hz}} 3nV/Hz ,电阻热噪声是 1 n V / Hz 1nV/\sqrt{\text{Hz}} 1nV/Hz ,则前者对总噪声的贡献是后者的9倍,此时完全可忽略后者的影响。
  2. 适当选取电阻值,尽量不让电阻热噪声占主导地位。
  3. FET输入运放一般不需要考虑电流噪声的影响,bipolar输入运放对小于1K的电阻,其电流噪声亦可忽略。
  4. 对于带宽大于10KHz的系统,白噪声占主导,1/f噪声可忽略。
  5. 多级放大中,一般第一级增益最大。如第一级增益比后级大3倍以上,则后级放大器的噪声可忽略。
  6. 引入低通滤波器可显著降低噪声。

参考资料

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值