DeepLearning基础学习笔记二(决策树算法DecisionTree)

概念

决策树是一个类似于流程图的树结构,可用于数据预测,其中每个内部节点表示在一个属性上的测试,每个分枝代表一个属性输出,而每个树叶节点代表类或类分布。树的最顶层为根结点,结构图如下:
在这里插入图片描述
其中某一个数据实例包含特征[A,B,C,Boolean],以A为根结点判断A特征取值(A-1,A-2,A-3),在特征A-2中只存在一种情况,因此不需要在分枝决策;在特征A-1,A-3中还存在一种以上的可能性,因此在以B,C特征为节点继续进行判断,知道判断特征的结果只剩下一种。

熵(entropy)

1948年,香农提出了 ”信息熵(entropy)“的概念一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少。
比特(bit)来衡量信息的多少
-(p1log(p1)+p2log(p2)+……+p10*log(p10))
可写成函数
在这里插入图片描述
变量的不确定性越大(也就是X值越小),信息熵也就越大。
如例子:现在有如下数据(根据不同的情况买iphoneX的人进行统计)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值