弹性力学变分原理:最小势能原理

最小势能原理是结构力学中的一个基本原理。它表明,对于一个在外力作用下的弹性体,平衡状态下的势能是所有可能的位移场中的最小值。为了推导出最小势能原理,我们可以从虚功原理出发,通过变分法来证明。

总势能定义

在弹性体中,总势能 Π \Pi Π 包括应变能和外力势能。其表达式为:

Π = U − W \Pi = U - W Π=UW

其中:

  • U U U 是系统的应变能。
  • W W W 是外力做的功。

应变能和外力做功的表达式

应变能 U U U 可以表示为:

U = 1 2 ∫ Ω σ : ϵ   d Ω U = \frac{1}{2} \int_\Omega \sigma : \epsilon \, d\Omega U=21Ωσ:ϵdΩ

其中, σ \sigma σ 是应力张量, ϵ \epsilon ϵ 是应变张量。

外力做功 W W W 可以表示为:

W = ∫ Ω b ⋅ u   d Ω + ∫ ∂ Ω t t ⋅ u   d S W = \int_\Omega b \cdot u \, d\Omega + \int_{\partial\Omega_t} t \cdot u \, dS W=ΩbudΩ+ΩttudS

其中, b b b 是体力, u u u 是位移, t t t 是表面力。

总势能的变分

考虑总势能 Π \Pi Π 的变分 δ Π \delta \Pi δΠ

δ Π = δ U − δ W \delta \Pi = \delta U - \delta W δΠ=δUδW

其中:

δ U = 1 2 ∫ Ω ( σ : δ ϵ + δ σ : ϵ )   d Ω \delta U = \frac{1}{2}\int_\Omega (\sigma : \delta \epsilon+\delta \sigma : \epsilon) \, d\Omega δU=21Ω(σ:δϵ+δσ:ϵ)dΩ

σ = C : ϵ \sigma = C : \epsilon σ=C:ϵ 带入上式:

δ U = 1 2 ∫ Ω ( C : ϵ : δ ϵ + C : δ ϵ : ϵ )   d Ω = ∫ Ω C : ϵ : δ ϵ   d Ω = ∫ Ω σ : δ ϵ   d Ω \delta U = \frac{1}{2}\int_\Omega (C : \epsilon : \delta \epsilon+ C:\delta \epsilon: \epsilon) \, d\Omega = \int_\Omega C : \epsilon : \delta \epsilon \, d\Omega =\int_\Omega \sigma : \delta \epsilon \, d\Omega δU=21Ω(C:ϵ:δϵ+C:δϵ:ϵ)dΩ=ΩC:ϵ:δϵdΩ=Ωσ:δϵdΩ

δ W = ∫ Ω b ⋅ δ u   d Ω + ∫ ∂ Ω t t ⋅ δ u   d S \delta W = \int_\Omega b \cdot \delta u \, d\Omega + \int_{\partial\Omega_t} t \cdot \delta u \, dS δW=ΩbδudΩ+ΩttδudS

将应变能和外力做功的变分代入总势能的变分中:

δ Π = ∫ Ω σ : δ ϵ   d Ω − ( ∫ Ω b ⋅ δ u   d Ω + ∫ ∂ Ω t t ⋅ δ u   d S ) \delta \Pi = \int_\Omega \sigma : \delta \epsilon \, d\Omega - \left( \int_\Omega b \cdot \delta u \, d\Omega + \int_{\partial\Omega_t} t \cdot \delta u \, dS \right) δΠ=Ωσ:δϵdΩ(ΩbδudΩ+ΩttδudS)

利用虚功原理

根据虚功原理,对于任意虚位移场 δ u \delta u δu ,有:

∫ Ω σ : δ ϵ   d Ω = ∫ Ω b ⋅ δ u   d Ω + ∫ ∂ Ω t t ⋅ δ u   d S \int_\Omega \sigma : \delta \epsilon \, d\Omega = \int_\Omega b \cdot \delta u \, d\Omega + \int_{\partial\Omega_t} t \cdot \delta u \, dS Ωσ:δϵdΩ=ΩbδudΩ+ΩttδudS

我们得到:

δ Π = 0 \delta \Pi = 0 δΠ=0

这表明,在平衡状态下,总势能 Π \Pi Π 的一阶变分为零。这意味着,总势能在平衡状态下取极值。

最小势能原理

注意,上面的步骤推导出总势能的一阶变分为零,只能说明势能取极值,而无法说明势能取极小值。不过,我们可以从能量的角度想一下,如果平衡状态的能量取极大值,而非平衡状态的能量更小,那这个世界感觉要乱套了。数学上的证明需要能量的二阶变分是否大于零。

image.png

势能的二阶变分推导

计算总势能的二阶变分 δ 2 Π \delta^2 \Pi δ2Π

δ 2 Π = δ ( δ Π ) \delta^2 \Pi = \delta (\delta \Pi) δ2Π=δ(δΠ)

我们需要对 δ Π \delta \Pi δΠ 再进行一次变分。首先计算 应变能的二阶变分 δ 2 U \delta^2 U δ2U 为:

δ 2 U = δ ( ∫ Ω σ : δ ϵ   d Ω ) \delta^2 U = \delta \left( \int_\Omega \sigma : \delta \epsilon \, d\Omega \right) δ2U=δ(Ωσ:δϵdΩ)

由于应力 σ \sigma σ 是应变 ϵ \epsilon ϵ 的函数,并且 σ = C : ϵ \sigma = C : \epsilon σ=C:ϵ,其中 C C C 是弹性刚度张量, ϵ = ∇ u \epsilon = \nabla u ϵ=u 是位移的函数,所以 δ σ = C : δ ϵ \delta \sigma = C : \delta \epsilon δσ=C:δϵ。因此:

δ 2 U = ∫ Ω δ σ : δ ϵ   d Ω \delta^2 U = \int_\Omega \delta \sigma : \delta \epsilon \, d\Omega δ2U=Ωδσ:δϵdΩ

代入 δ σ = C : δ ϵ \delta \sigma = C : \delta \epsilon δσ=C:δϵ,我们得到:

δ 2 U = ∫ Ω ( C : δ ϵ ) : δ ϵ   d Ω \delta^2 U = \int_\Omega (C : \delta \epsilon) : \delta \epsilon \, d\Omega δ2U=Ω(C:δϵ):δϵdΩ

外力做功的二阶变分 δ 2 W \delta^2 W δ2W 为:

δ 2 W = δ ( ∫ Ω b ⋅ δ u   d Ω + ∫ ∂ Ω t t ⋅ δ u   d S ) \delta^2 W = \delta \left( \int_\Omega b \cdot \delta u \, d\Omega + \int_{\partial \Omega_t} t \cdot \delta u \, dS \right) δ2W=δ(ΩbδudΩ+ΩttδudS)

由于 b b b t t t 是常量,它们的变分为零,因此:

δ 2 W = ∫ Ω b ⋅ δ ( δ u )   d Ω + ∫ ∂ Ω t t ⋅ δ ( δ u )   d S \delta^2 W = \int_\Omega b \cdot \delta (\delta u) \, d\Omega + \int_{\partial \Omega_t} t \cdot \delta (\delta u) \, dS δ2W=Ωbδ(δu)dΩ+Ωttδ(δu)dS

实际上,由于 δ ( δ u ) \delta (\delta u) δ(δu) 为零,所以 δ 2 W = 0 \delta^2 W = 0 δ2W=0

结合 δ 2 U \delta^2 U δ2U δ 2 W \delta^2 W δ2W,我们得到总势能的二阶变分 δ 2 Π \delta^2 \Pi δ2Π 为:

δ 2 Π = δ 2 U − δ 2 W = ∫ Ω ( C : δ ϵ ) : δ ϵ   d Ω = 2 ∫ Ω U ( δ ϵ )   d Ω \delta^2 \Pi = \delta^2 U - \delta^2 W = \int_\Omega (C : \delta \epsilon) : \delta \epsilon \, d\Omega = 2\int_\Omega U(\delta \epsilon) \, d\Omega δ2Π=δ2Uδ2W=Ω(C:δϵ):δϵdΩ=2ΩU(δϵ)dΩ

可得,应变能二阶变分等于应变变分产生的应变能,由于应变能是正定的,所以。

总结

最小势能原理说明,在弹性体的平衡状态下,系统的总势能达到极小值。这一结论为结构分析和有限元方法提供了理论基础,通过变分法,我们能够求解平衡状态下的位移场和应力场。由于本文使用了线弹性本构方程,所以上面推导适用范围为线弹性体,但是关于最小势能原理还有更多的值得探讨的主题:

  • 如何通过最小势能原理求解平衡方程?
  • 最小势能原理的适用范围是什么? 对于非线弹性体是否能够推广?
  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值