泛函与变分法:基本定义

本文详细阐述了泛函的定义,将其视为函数和变量映射的广义概念,并介绍了变分的定义,包括变分的增量和拉格朗日泛函变分的计算公式。此外,文中还讨论了变分与方向导数的关系以及泛函驻值的概念,以函数极值点为例,探讨了泛函驻值的条件。
摘要由CSDN通过智能技术生成

泛函的定义

函数是变量到变量的映射关系,泛函是函数和变量的映射关系,泛函是一种广义函数,可以定义为如下:

  • 对于某一类函数 y ( x ) y(x) y(x)中的每一个函数,都有一个值 Π \Pi Π与其对应,变量 Π \Pi Π称为函数 y ( x ) y(x) y(x)的泛函,记为: Π = Π [ y ( x ) ] \Pi = \Pi[y(x)] Π=Π[y(x)]

变分的定义

泛函 Π [ y ( x ) ] \Pi[y(x)] Π[y(x)]的宗量 y ( x ) y(x) y(x)的一个很小的增量称之为变分(这里的很小到底指什么?需要用数学行的 δ \delta δ语言描述),记为 δ y \delta y δy,是与 y ( x ) y(x) y(x)非常接近的 y 1 ( x ) y1(x) y1(x)的差值
δ y = y ( x ) − y 1 ( x ) \delta y = y(x) - y1(x) δy=y(x)y1(x)
对于 δ y \delta y δy有两点理解:

  • δ y \delta y δy本身也是关于x的函数
  • 在指定的x域中, δ y \delta y δy都是微量

关于两个函数曲线的接近是有差异的,如下两中情况,都满足函数值接近,但是右边一阶导数也接近
image.png image.png

我们定义"k"阶接近度曲线满足下面每个差值都很小:
image.png
我们也可以用拉格朗日引入的 ε \varepsilon ε来表示这种微量:
image.png

泛函的变分

第一种定义

泛函的增量:
image.png
可以展开为线性项和非线性项:
image.png
线性的意思是:
image.png
我们将泛函增量中的线性部分称为泛函的变分,它是泛函增量的主部
image.png

第二种定义,拉格朗日泛函变分

image.png
image.png
image.png
可以得到变分的计算公式:
image.png

变分和方向导数:
F ( ε ) = Π ( y + ε δ y ) F(\varepsilon ) = \varPi (y + \varepsilon \delta y) F(ε)=Π(y+εδy)
F ′ ( ε ) ∣ ε = 0 = lim ⁡ ε → 0 F ( ε ) − F ( 0 ) ε − 0 F{}^{\prime}(\varepsilon ){|}_{\varepsilon =0} = \lim_{\varepsilon \to 0} \frac{F(\varepsilon)-F(0)}{\varepsilon - 0} F(ε)ε=0=limε0ε0F(ε)F(0)
可以得到 F ( ε ) − F ( 0 ) = F ′ ( ε ) ⋅ ε F(\varepsilon)-F(0) = {F}^{\prime}(\varepsilon) \cdotp \varepsilon F(ε)F(0)=F(ε)ε
即: Π ( y + ε δ y ) − Π ( y ) = δ Π ⋅ ε \varPi (y + \varepsilon \delta y) - \varPi (y) = \delta \Pi \cdot \varepsilon Π(y+εδy)Π(y)=δΠε
对比函数的定义,变分有点类似于导数的概念,但是是对于 ε \varepsilon ε的导数
上面的公式中取 ε = 1 \varepsilon = 1 ε=1即可得到Bonet的书中的线性化的公式

泛函的驻值

函数的驻值

函数在x= x0附近任意点的值都不大于(或小于)y(x0),则x0为函数的极值点,满足函数的微分 dy = 0
一元函数泰勒展开:
image.png
二元函数泰勒展开:
image.png
不失一般性,多元函数:
image.png
image.png
image.png
image.png
函数去极值的条件为:
image.pngimage.png
x 点为 { 极小值 , d 2 f > 0 极大值 , d 2 f < 0 驻值 , d 2 f = 0 x点为 \begin{cases} 极小值,& {d}^{2}f >0 \\ 极大值,& {d}^{2}f <0 \\ 驻值,& {d}^{2}f =0 \end{cases} x点为 极小值,极大值,驻值,d2f>0d2f<0d2f=0

泛函的驻值条件

泛函的变分为0,image.png

参考:《变分法及有限元(钱伟长)》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值