泛函的定义
函数是变量到变量的映射关系,泛函是函数和变量的映射关系,泛函是一种广义函数,可以定义为如下:
- 对于某一类函数 y ( x ) y(x) y(x)中的每一个函数,都有一个值 Π \Pi Π与其对应,变量 Π \Pi Π称为函数 y ( x ) y(x) y(x)的泛函,记为: Π = Π [ y ( x ) ] \Pi = \Pi[y(x)] Π=Π[y(x)]
变分的定义
泛函
Π
[
y
(
x
)
]
\Pi[y(x)]
Π[y(x)]的宗量
y
(
x
)
y(x)
y(x)的一个很小的增量称之为变分(这里的很小到底指什么?需要用数学行的
δ
\delta
δ语言描述),记为
δ
y
\delta y
δy,是与
y
(
x
)
y(x)
y(x)非常接近的
y
1
(
x
)
y1(x)
y1(x)的差值
δ
y
=
y
(
x
)
−
y
1
(
x
)
\delta y = y(x) - y1(x)
δy=y(x)−y1(x)
对于
δ
y
\delta y
δy有两点理解:
- δ y \delta y δy本身也是关于x的函数
- 在指定的x域中, δ y \delta y δy都是微量
关于两个函数曲线的接近是有差异的,如下两中情况,都满足函数值接近,但是右边一阶导数也接近
我们定义"k"阶接近度曲线满足下面每个差值都很小:
我们也可以用拉格朗日引入的
ε
\varepsilon
ε来表示这种微量:
泛函的变分
第一种定义
泛函的增量:
可以展开为线性项和非线性项:
线性的意思是:
我们将泛函增量中的线性部分称为泛函的变分,它是泛函增量的主部
第二种定义,拉格朗日泛函变分
可以得到变分的计算公式:
变分和方向导数:
F
(
ε
)
=
Π
(
y
+
ε
δ
y
)
F(\varepsilon ) = \varPi (y + \varepsilon \delta y)
F(ε)=Π(y+εδy)
F
′
(
ε
)
∣
ε
=
0
=
lim
ε
→
0
F
(
ε
)
−
F
(
0
)
ε
−
0
F{}^{\prime}(\varepsilon ){|}_{\varepsilon =0} = \lim_{\varepsilon \to 0} \frac{F(\varepsilon)-F(0)}{\varepsilon - 0}
F′(ε)∣ε=0=limε→0ε−0F(ε)−F(0)
可以得到
F
(
ε
)
−
F
(
0
)
=
F
′
(
ε
)
⋅
ε
F(\varepsilon)-F(0) = {F}^{\prime}(\varepsilon) \cdotp \varepsilon
F(ε)−F(0)=F′(ε)⋅ε
即:
Π
(
y
+
ε
δ
y
)
−
Π
(
y
)
=
δ
Π
⋅
ε
\varPi (y + \varepsilon \delta y) - \varPi (y) = \delta \Pi \cdot \varepsilon
Π(y+εδy)−Π(y)=δΠ⋅ε
对比函数的定义,变分有点类似于导数的概念,但是是对于
ε
\varepsilon
ε的导数
上面的公式中取
ε
=
1
\varepsilon = 1
ε=1即可得到Bonet的书中的线性化的公式
泛函的驻值
函数的驻值
函数在x= x0附近任意点的值都不大于(或小于)y(x0),则x0为函数的极值点,满足函数的微分 dy = 0
一元函数泰勒展开:
二元函数泰勒展开:
不失一般性,多元函数:
函数去极值的条件为:
x
点为
{
极小值
,
d
2
f
>
0
极大值
,
d
2
f
<
0
驻值
,
d
2
f
=
0
x点为 \begin{cases} 极小值,& {d}^{2}f >0 \\ 极大值,& {d}^{2}f <0 \\ 驻值,& {d}^{2}f =0 \end{cases}
x点为⎩
⎨
⎧极小值,极大值,驻值,d2f>0d2f<0d2f=0
泛函的驻值条件
泛函的变分为0,
参考:《变分法及有限元(钱伟长)》