机器学习里面的归一化、标准化、中心化、正则化

归一化、标准化、中心化是对一组数值而言的,主要墓地是改变这一组数值的均值和分布范围。

  • 归一化,把 min-max normalization 叫做归一化,也就是x=x - min(x) / max(x) - min(x)
  • 标准化,把 z-score normalization 叫做标准化,也就是x=x - mean(x) / μ
  • 中心化,所有数值都减去这组数值的平均值,那么这堆数值的平均值就变成了0。通常也叫零均值化。
  • 正则化:通常是在损失函数后面添加一个惩罚项,来影响计算得到的损失值。惩罚项也是一个函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值