数据的中心化和标准化

机器学习基础 专栏收录该内容
2 篇文章 0 订阅

简介:
意义:数据中心化和标准化在回归分析中是取消由于量纲不同、自身变异或者数值相差较大所引起的误差。
原理:数据标准化:是指数值减去均值,再除以标准差;
数据中心化:是指变量减去它的均值。
目的:通过中心化和标准化处理,得到均值为0,标准差为1的服从标准正态分布的数据。

在回归问题和一些机器学习算法中,以及训练神经网络的过程中,还有PCA等通常需要对原始数据进行中心化(Zero-centered或者Mean-subtraction)处理和标准化(Standardization或Normalization)处理。

  • 目的:通过中心化和标准化处理,得到均值为0,标准差为1的服从标准正态分布的数据。计算过程由下式表示: x=xμσ
  • 原因:在一些实际问题中,我们得到的样本数据都是多个维度的,即一个样本是用多个特征来表征的。很显然,这些特征的量纲和数值得量级都是不一样的,而通过标准化处理,可以使得不同的特征具有相同的尺度(Scale)。这样,在学习参数的时候,不同特征对参数的影响程度就一样了。简言之,当原始数据不同维度上的特征的尺度(单位)不一致时,需要标准化步骤对数据进行预处理。

下图是二维的示例:

这里写图片描述

  • 左图表示的是原始数据
  • 中间的是中心化后的数据,可以看出就是一个平移的过程,平移后中心点是(0,0)。同时中心化后的数据对向量也容易描述,因为是以原点为基准的。
  • 右图将中心化后的数据除以标准差,得到为标准化的数据,可以看出每个维度上的尺度是一致的(红色线段的长度表示尺度),而没有处理之前的数据是不同的尺度标准。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。

参考:https://www.zhihu.com/question/37069477

  • 18
    点赞
  • 4
    评论
  • 36
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值