【ML paper】Introduction to Boosted Trees

本文深入解析Boosted Trees(BT)的学习思路,包括BT模型、目标函数、优化方法,如加性学习、损失函数和树的定义。通过泰勒展开式简化目标函数,探讨树的复杂度和学习过程中的trade-off,如提前停止和剪枝策略。BT的核心在于每轮学习一棵树,通过一阶导和二阶导选择最优目标函数对应的树。
摘要由CSDN通过智能技术生成

本文是对陈天奇关于Boosted Tree介绍slides的读后梳理。第一次读论文XGBoost: A Scalable Tree Boosting System的时候很懵逼,于是找到了这份slides,这里天奇大佬的介绍很细致,本篇将主要叙述slides中与BT原理直接相关的内容。

 

0.BT的学习思路

1.我们想要学习什么:模型,目标。

2.如何学习:优化方法。

3.trade-off。

4.总结。

 

1.BT的模型和目标

模型

预测值 = 样本输入所有树的输出值之和。

目标函数

目标函数 = 所有样本的loss函数(真实值,模型预测值)之和 + 所有树的复杂度之和。

前项代表模型在样本集上的训练误差(variance),后项代表模型的复杂度(bias)。loss函数可以根据需求取不同函数,如平方差损失、罗辑斯谛损失。

 

2.优化方法

这里要学习的目标与其他算法不同,从参数空间变成了函数空间。参数空间:学习模型中的权重;函数空间:学习函数f,包括函数的结构和其中的权重。因此过去的SGD对f的学习不管用了,于是提出了加性学习(Additive Training (Boosting))。

加性学习

每轮学习一棵树f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值