概念(要学什么)
回归树(CART)
回归树emsemble
模型
$$y_i = \sum_{k=1}^{K}f_k(x_i) , f \in F$ $
参数
GB(如何学习)
additve training(boosting)
L(t)=∑i=1nl(yi,ŷ (t−1)i+ft(xi))+Ω(ft)
L(t)≈∑i=1n[l(yi,ŷ (t−1)i)+gif(xi)+12h2if2(xi)]+Ω(ft)
很关键的一点
gi=∂ŷ (t−1)il(yi,ŷ (t−1)i)
hi=∂2ŷ (t−1)il(yi,ŷ (t−1)i)
L̃ (t)=∑i=1n[gif(xi)+12h2if2(xi)]+γT+12λ∑j=1Tw2j
Rabit文档
https://github.com/dmlc/rabit/blob/master/doc/guide.md
allreduce和ps的对比
http://hunch.net/?p=151364
陈天奇关于rabit的说明
http://weibo.com/p/1001603801281637563132?pids=Pl_Official_CardMixFeedv6__4&feed_filter=2