[阅读笔记]Introduction to Boosted Trees

概念(要学什么)

回归树(CART)

回归树emsemble

模型

$$y_i = \sum_{k=1}^{K}f_k(x_i) , f \in F$ $

参数

GB(如何学习)

additve training(boosting)

L(t)=i=1nl(yi,ŷ (t1)i+ft(xi))+Ω(ft)

L(t)i=1n[l(yi,ŷ (t1)i)+gif(xi)+12h2if2(xi)]+Ω(ft)

很关键的一点
gi=ŷ (t1)il(yi,ŷ (t1)i)

hi=2ŷ (t1)il(yi,ŷ (t1)i)

L̃ (t)=i=1n[gif(xi)+12h2if2(xi)]+γT+12λj=1Tw2j


Rabit文档
https://github.com/dmlc/rabit/blob/master/doc/guide.md
allreduce和ps的对比
http://hunch.net/?p=151364
陈天奇关于rabit的说明
http://weibo.com/p/1001603801281637563132?pids=Pl_Official_CardMixFeedv6__4&feed_filter=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值