第五节课笔记

本文探讨了大模型部署中的挑战,如内存消耗、动态形状处理,以及如何通过模型并行、量化技术、内存优化和高性能推理引擎来提高部署效率。LMDeploy提供了云端和移动端部署方案,利用轻量化推理引擎、接口API和算子融合等技术提升服务质量。
摘要由CSDN通过智能技术生成

模型部署 定义 产品形态 计算设备

大模型特点 内存开销大 动态shape 结构简单

部署挑战 设备存储 推理速度 服务质量

部署方案:技术点 (模型并行 transformer计算和访存优化 低比特量化 Continuous Batch Page Attention)方案(云端 移动端)

LMDeploy: 云端部署

接口: python gRPC RESTful

轻量化 推理引擎 服务(api server gradio triton inference server)

无缝对接open compass

推理性能 静态vs动态

核心功能 量化FP16 Int4-8

模型显存优化明显(24GB显存 4倍提升)

计算密集 访存密集(大模型一般是访存密集)

推理引擎 TurboMind

持续批处理 有状态的推理 高性能cuda kernel Blocked k/v cache分块缓存

持续批处理 请求队列+Persistent线程

有状态的推理 推理测的缓存

分块的k/v缓存 历史缓存

高性能cuda kernel

Flash Attention2

Split-k decoding

Fast w4a16, kv8

算子融合

推理服务api server

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值