Git Re-Basin: Merging Models modulo Permutation Symmetries解读

本文探讨了一种新的模型整合方法,允许在不同节点使用独立数据训练同一模型后快速合并。这一进展为分布式训练提供高效方案,并为隐私计算带来创新思路,类似于联邦学习,但无需集中数据,解决了数据隐私问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接: https://arxiv.org/pdf/2209.04836.pdf
论文解读: 零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究@机器之心

关于这篇文章的解读, 机器之心的文章中已经解读的比较到位了。这里谈几点自己的思考:
1 这篇文章为分布式训练提供了新的方法。可以在不同的节点上, 用不同的数据分别训练同一个模型, 在对训练好的模型进行合并。
2 为隐私计算提供了新思路。 类似联邦学习的思路, 数据可以不归集到一个中心节点, 而是存储在自己手中, 然后分别用自己的数据训练同一个模型。把训练好的模型共享, 然后对模型参数进行操作, 就可以得到对多个数据集效果都好的模型,相当于用全量数据集进行了训练。 这样就解决了数据隐私的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值