解决huggingface模型不能下载的几个方法

国内访问huggingface下载模型通常会出现网络原因而失败,这里提供2种有效的解决方法:

方法1: 利用代理

设置以下环境变量:前提是你有可以访问外网的代理

os.environ['https_proxy'] = 'http://127.0.0.1:10809'
os.environ['http_proxy'] = 'http://127.0.0.1:10809'
os.environ['all_proxy'] = 
### 如何在 AutoDL 平台上下载 Hugging Face 模型 为了顺利地从 Hugging Face 下载模型至 AutoDL 平台,需遵循特定步骤来确保过程无误。 #### 设置网络环境 由于访问 Hugging Face 可能受到地域限制的影响,在尝试下载前应确认已设置好稳定的代理或科学上网工具[^3]。这一步骤对于保证后续操作顺畅至关重要。 #### 修改依赖库版本 有时默认安装的 Python 库可能与 Hugging Face 的 API 不兼容,导致下载失败。针对此类情况,建议调整 `requests` 和 `urllib3` 的版本为经过验证可以正常工作的组合: ```bash pip install requests==2.27.1 pip install urllib3==1.25.11 ``` 此更改有助于解决常见的连接错误问题。 #### 使用命令行工具进行下载 通过官方提供的 CLI 工具可以直接指定目标位置存储所需模型文件。具体指令如下所示: ```bash huggingface-cli download --resume-download MODEL_NAME --local-dir LOCAL_DIRECTORY_PATH ``` 其中 `MODEL_NAME` 替换为目标模型的具体名称(例如 `meta-llama/Llama-2-7b-hf`),而 `LOCAL_DIRECTORY_PATH` 则指明希望保存这些资源的位置[^4]。 #### 处理缓存中的已有模型 如果之前已经存在相同名称但不同版本或其他不完整的副本,则可以通过清理相应目录下的旧数据来避免冲突。一般情况下,默认路径位于用户的主目录下 `.cache/huggingface/transformers` 文件夹内[^2]。 #### Git LFS 方法作为备选方案 当遇到持续性的下载难题时,考虑采用 Git Large File Storage (LFS) 方式获取大型二进制文件也是一种有效的替代策略。首先按照指引完成必要的软件安装和初始化工作之后再执行克隆仓库的操作即可获得所需的预训练权重和其他辅助材料[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值