数据处理方法—— 7 种数据降维操作 !!

文章目录


数据降维

数据降维是一种将高维数据转换为低纬数据的技术,同时尽量保留原始数据的重要信息。这对于处理大规模数据集非常有用,因为它有助于减少计算资源的需要,并提高算法的效率。以下是一些常用的数据降维方法,以及它们的原理和应用。

1. 主成分分析(PCA)

原理:PCA通过正交变换将原始数据转换到一组线性不相关的成份上,通常称为主成分。它识别数据中的模式,以找出数据的最大方差方向,并将数据投影到这些方向上。

应用:PCA通常用于减少数据集的维度,同时尽可能保留数据中的变异性。它也常用于可视化高维数据。

from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

# 加载数据集
data = load_iris()
X = data.data

# 应用PCA
pca = PCA(n_components=2)  # 降到2维
X_pca = pca.fit_transform(X)

# 可视化结果
plt.scatter(X_pca[:, 0], X_pca[:, 1])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA of Iris Dataset')
plt.show()

2. 线性判别分析(LDA)

原理:LDA是一种监督学习算法,旨在找到能够最大化类间差异和最小化类内差异的特征子空间。LDA特别关注数据的类别标签,使得数据投影后,同类数据点尽可能接近,不同类数据点尽可能远离。

应用:LDA常用于增强分类模型的性能。通过最大化类间差异和最小化类内差异,LDA能够提高分类算法的准确度。它还常用于模式识别任务,如人脸识别,其中可以利用LDA来提取面部特征。(LDA用于展示不同类别的数据在降维后的分布情况)。

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

# LDA也是一种监督学习算法,需要类别标签
y = data.target

# 应用LDA
lda = LDA(n_components=2)  # 降到2维
X_lda = lda.fit_transform(X, y)

# 可视化结果
plt.scatter(X_lda[:, 0], X_lda[:, 1], c=y)
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.title('LDA of Iris Dataset')
plt.show()

3. t-分布随机邻域嵌入(t-SNE)

原理:t-SNE是一种非线性降维技术,特别适合于将高维数据嵌入到二维或三维空间中进行可视化。它通过概率分布转换到相似性来保留局部结构,使得相似的对象在低维空间中更接近。

应用:t-SNE常用于高维数据的可视化。由于它在降维过程中保持了数据点间的局部关系,因此它特别适合于探索性数据分析,以识别高维数据集中的模式和群体。在生物信息学和社交网络分析中尤为常见。

from sklearn.manifold import TSNE

# 应用t-SNE
tsne = TSNE(n_components=2, random_state=0)
X_tsne = tsne.fit_transform(X)

# 可视化结果
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y)
plt.xlabel('t-SNE feature 1')
plt.ylabel('t-SNE feature 2')
plt.title('t-SNE of Iris Dataset')
plt.show()

4. 局部线性嵌入(LLE)

原理:LLE是一种非线性降维技术。它的核心思想是保持数据点的局部特性。LLE首先在每个点的邻域中找到最佳的线性表示,然后在低维空间中重建这些线性关系。这种方法尤其适用于那些局部区域结构重要的数据。

应用:LLE通常用于数据可视化和探索数据分析,尤其是当数据具有非线性结构时。它在图像处理、语音识别和生物信息学中被广泛应用,用于发现数据中的内在结构和模式。

from sklearn.manifold import LocallyLinearEmbedding

# 应用LLE降维
lle = LocallyLinearEmbedding(n_components=2)
X_lle = lle.fit_transform(X)

# 可视化结果
plt.scatter(X_lle[:, 0], X_lle[:, 1], c=digits.target, cmap='Spectral', alpha=0.5)
plt.colorbar()
plt.title("LLE on the Digits Dataset")
plt.show()

5. 多维缩放(MDS)

原理:MDS是一种用于降维的技术,旨在数据点在低维空间中的相对位置尽可能地反映它们在原始高维空间中的距离。MDS通过优化过程寻找一个低维表示,使得这个表示中的点间距离尽可能地接近原始数据中的距离。

应用:MDS常用于数据可视化,尤其是当我们关心数据点之间的距离或相似性时。它在心理学、市场研究和社会学中特别有用,用于分析和可视化距离或相似性数据,如在语义分析或用户偏好研究中。

from sklearn.manifold import MDS
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt

# 加载数据集
digits = load_digits()
X = digits.data

# 应用MDS降维
mds = MDS(n_components=2)
X_mds = mds.fit_transform(X)

# 可视化结果
plt.scatter(X_mds[:, 0], X_mds[:, 1], c=digits.target, cmap='Spectral', alpha=0.5)
plt.colorbar()
plt.title("MDS on the Digits Dataset")
plt.show()

6. 奇异值分解(SVD)

原理:SVD是一种将矩阵分解为三个矩阵的乘积的方法。它将原始数据矩阵分解为特征值和特征向量,能够揭示数据的本质结构。

应用:SVD在推荐系统中非常有用,尤其是处理大型稀疏矩阵时。通过提取矩阵中最重要的特征,SVD有助于预测用户对项目的评分或偏好。此外,它也用于数字信号处理和图像压缩领域。

import numpy as np
from scipy.linalg import svd
import matplotlib.pyplot as plt

# 假设 A 是一个矩阵
U, s, VT = svd(A)

# 选择前k个奇异值来近似原始矩阵
k = 2
A_approx = np.dot(U[:, :k], np.dot(np.diag(s[:k]), VT[:k, :]))

# 可以将 A_approx 可视化或用于进一步分析

7. 自动编码器(Autoencoders)

原理:Autoencoders是一种基于神经网络的非线性降维技术。它通过训练网络学习一个低维表示(编码),然后重构输出,以尽可能接近输入数据。

应用:Autoencoders广泛应用于无监督学习的特征提取和数据压缩。在深度学习领域,它们用于学习数据的有效表示,有助于改善图像重构和去噪任务。也可以生成新的数据实例,如在生成对抗网络(GAN)中的应用。

from keras.layers import Input, Dense
from keras.models import Model

# 设定输入维度
input_dim = 784  # 例如,对于 28x28 的图像,这将是 784
encoding_dim = 32  # 编码空间的维度

# 定义编码器层
input_layer = Input(shape=(input_dim,))
encoded = Dense(encoding_dim, activation='relu')(input_layer)

# 定义解码器层
decoded = Dense(input_dim, activation='sigmoid')(encoded)

# 构建自动编码器模型
autoencoder = Model(input_layer, decoded)

# 构建编码器模型
encoder = Model(input_layer, encoded)

# 构建解码器模型
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]  # 最后一层作为解码器
decoder = Model(encoded_input, decoder_layer(encoded_input))

# 编译自动编码器
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

# 训练自动编码器
# 假设 x_train 是输入数据
# autoencoder.fit(x_train, x_train, epochs=50, batch_size=256, shuffle=True)

# 用编码器和解码器生成编码和解码后的数据
# encoded_imgs = encoder.predict(x_test)
# decoded_imgs = decoder.predict(encoded_imgs)

总结

数据降维技术广泛被划分为两类:线性降维方法与非线性降维方法。线性方法,例如主成分分析(PCA)和线性判别分析(LDA),通常适用于数据具有线性分布的场景。相对地,非线性方法如t-分布随机邻域嵌入(t-SNE)、多维缩放(MDS)和局部线性嵌入(LLE),则更适合处理具有复杂分布特征的数据集。

选择合适的降维技术取决于数据的固有属性及分析目标的具体需求。在适当的情境中应用恰当的降维策略,能够显著提升数据处理流程的效率以及算法的整体性能表现。

  • 24
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1. 项目背景 基于项目提供的汽车相关数据,通过聚类分析的方法实现汽车产品聚类,以构建汽车产品画像、分析产品定位、完成汽车竞品分析等要求。 2. 项目数据 项目提供的汽车数据包括26个字段共205条数据数据文件为“car_price.csv” 26个字段可以划分为类别型变量和数值型变量两,包括汽车的长/宽/高、汽车净重、燃油系统、燃油类型、驱动类型、峰值转速、里程数、汽车价格等。 3. 项目要求 通过聚类的方法构建汽车产品画像、分析不同类别汽车的产品定位,寻找Volkswagen大众汽车的竞品品牌。 4. 项目思路 第一步:数据字段理解 根据项目所提供的数据,对数据中26个字段进行理解。结合汽车行业的相关知识,26个字段可以大致归为两类:第一类是车辆自身属性(如燃油系统、燃油类型、汽缸数、峰值转速、汽车长宽高等);第二类是车辆的市场属性(如车辆名称、车辆价格、风险评估等级)。 26个字段主要分为数值型变量和类别型变量两类。 第二步:原始数据描述性统计及变量分布可视化 对原始数据进行描述性统计并对数据中的字段分布进行可视化(详情见主文档)。通过对原始数据的观察,数据不存在缺失值、不存在重复值,“CarName”字段存在部分车辆品牌名称错误的情况。 第三步:确定聚类方法,明确聚类要求 通过对原始数据的变量观察,该数据变量主要为数值型变量和类别型变量两类,且类别型变量数量较多,常用的K-means聚类只能分析数值型变量,无法考虑类别型变量所包含的信息。二阶段聚类法适用于包含数值型和类别型变量的混合数据,因此考虑使用二阶段聚类法分析数据。 二阶段聚类法的要求是:类别型变量符合多项式分布(即变量的值分属几个类别);数值型变量间要相互独立,且数值型变量近似服从正态分布。项目所给出的数据中,类别型变量符合多项式分布,因此仅需进一步观察并处理数值型变量。 第四步:特征工程 数据清洗与新变量生成。原始数据指给出了车辆的名称,没有给出车辆所属品牌,结合最终聚类分析的需要,根据“CarName”字段提取出车辆所属品牌信息,命名为“brand”。同时对品牌名称中的错误拼写进行清洗。 变量相关性分析与可视化。由于二阶段聚类要求数值型变量间相互独立,所以需要对数值型变量间的相关性进行查看与处理。相关性分析结果表示14个数值型变量之间存在高相关性情况,需要结合汽车知识背景与变量特征进行进一步处理。 高相关变量的处理——“highwaympg”和“citympg”呈高度正相关。其实不管是高速mpg还是城市mpg,其本质都是mpg指标,而且通过观察数据,二者之间的差异较小(极值、均值),因此考虑将二者合并为一个指标'mpg',计算方式为取二者均值:mpg=(highwaympg+citympg)/2; 高相关性变量的处理——“price”变量与其余变量产生高相关性的频数最多,可能是因为车辆自身属性和配置的变动会直接影响着车辆的市场价格。此外,与其他变量相比,price属性属于车辆的市场销售属性(而非车辆自身属性),在聚类中更适合作为类别型变量,对车辆的价位进行划分,因此,考虑将price变量转换为类别型变量,按照其价格分布划分为Low price(20000)三类; 高相关性变量的处理——对于其余数值型变量,变量数目较多且多个变量之间存在相关性,因此考虑使用因子分析对数值型变量进行降维,以减少数值型变量的数目并使变量间相互独立。 第五步:数值型变量因子分析结果(基于SPSS实现) 利用SPSS对数值型变量进行因子分析,KMO值>0.8,巴特利球形检验p值=0,说明参与因子分析的变量间存在相关性,可以进行因子分析。最终得到两个因子。 第一个因子包括:车长、车宽、车净重、引擎尺寸、车轴距、mpg、马力、车内径比。简单将该因子归纳为车辆截面与马力因子; 第二个因子包括:车高、峰值转速、车压缩比。简单将该因子归纳为车辆垂面与转速因子; 第六步:两阶段聚类及结果(基于SPSS实现) 对处理后的数据进行两阶段聚类,最终将205辆车聚为两类。 根据SPSS聚类结果,第一类中包含120条车辆数据,占总数据的58.5%;第二类中包含85条车辆数据,占总数据的41.5%。两类簇数据规模近似,没有过大或过小的类簇。 根据SPSS聚类结果,聚类质量属于“良好”范围,仍有进一步改进和优化的空间。 根据SPSS聚类结果,显著区分两类类簇的变量(重要性>0.6)按重要性大小排序依次是驱动类型、燃油系统、车辆截面与马力因子、价格范围。 汽车产品画像与产品定位 根据区分类簇的四个重要标签来对数据中的汽车产品进行产品画像与产品定位。 第一类画像:驱动类型多为fwd(前轮驱动),燃油系统多
鸢尾花数据集是一个常用的分类实验数据集,也称为Iris数据集。它包含了150个数据样本,分为3类,每类50个数据。每个数据样本有4个属性,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。通过这4个特征,我们可以预测鸢尾花属于三个类中的哪一类(Setosa、Versicolour、Virginica)\[2\]。 如果我们想要对鸢尾花数据集进行降维,可以使用主成分分析(PCA)方法。PCA是一常用的降维技术,可以将高维数据映射到低维空间。在这个过程中,我们首先加载高维数据集(维度为4),然后确定降维后的空间维度(通常选择2维)。接着,我们可以使用PCA算法对数据进行降维\[3\]。 所以,鸢尾花数据集的PCA降维过程可以通过以下步骤实现: 1. 加载鸢尾花数据集。 2. 确定降维后的空间维度,比如选择2维。 3. 使用PCA算法对数据进行降维。 这样,我们就可以得到降维后的鸢尾花数据集,其中每个样本只有两个特征。这样的降维可以帮助我们更好地理解和可视化数据集中的模式和结构。 #### 引用[.reference_title] - *1* [【使用 PCA 实现对鸢尾花四维数据(Iris)进行降维处理】](https://blog.csdn.net/m0_51534537/article/details/123548248)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [PCA线性降维——应用于IRIS鸢尾花数据集](https://blog.csdn.net/weixin_41819299/article/details/80938005)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [基于PCA的数据降维(鸢尾花(iris)数据集)](https://blog.csdn.net/weixin_51756038/article/details/130058265)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOYCE_Leo16

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值