CV 面试指南—深度学习知识点总结(6)

本文是CV面试深度学习知识点系列的第六篇,探讨如何提升神经网络的泛化能力,解释CNN优于DNN的原因,解析DNN的梯度更新过程,并分析Depthwise卷积的实际速度与理论速度的差距。内容涵盖数据增强、模型优化、正则化和梯度下降等关键点。
摘要由CSDN通过智能技术生成
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOYCE_Leo16

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值