基于均值滤波的非线性反锐化掩膜

线性反锐化掩模处理过程中对噪声极其敏感,从而导致噪声加大,细节丢失,图像质量降低,针对线性反锐化掩模的局限性和缺点,提出了根据灰度特性来调节具有增强作用的加权因数,可非线性地增强图像的边缘细节,即为非线性反锐化掩模处理方法。算法中使用模糊影像以增强空间频率响应,且算法中决定增强程度的加权因数K会随原始影像密度的变化而变化。在低密度区K值减小,在高密度区K值增加,使得该算法能根据CR图像灰度特性来调节增强程度的加权因数,从而可非线性地增强CR影像的边缘细节。

I=imread('8888.bmp'); 
I=rgb2gray(I); 
K=imnoise (I,'salt & pepper',0.02);
K=im2double(K); 
imshow (K);
title('原图像') figure;
f_=filter2(fspecial('average',3),K); 
fl_=filter2(fspecial('average',5),K);
subplot (2,2,1) ; imshow(f_) ;title ('3*3均值滤波');
subplot (2,2,3) ; imshow(fl_) ;title ('5*5均值滤波');
k=max(K(:)); 
for i=10:999 
    for j=10:999 
        k_(i,j)=4* (sin(K (i,j))/k*pi/2);
    end
end
K=im2uint8(K);
f_=im2uint8(f_);
f1_=im2uint8(f1_);
k_=im2uint8(k_);

for i=10:999 
    for j=10:999 
        G_(i,j)=K(i,j)+k_(i,j).*(K(i,j)-f_(i,j));
        G1_(i,j)=K(i,j)+k_(i,j).*(K(i,j)-f1_(i,j));
    end
end

subplot (2,2,2) ; imshow(G_) ;title ('基于均值变换的3*3反锐化掩膜');
subplot (2,2,4) ; imshow(Gl_) ;title ('基于均值变换的5*5反锐化掩膜');

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值