【动手学深度学习】基础优化算法

1. 梯度下降

在这里插入图片描述

(1)梯度是什么?
梯度是使得这个函数值增加最快的方向;负梯度是函数值下降最快的方向(黄线的方向)。
(2)学习率(步长的超参数)
η \eta η:沿着这个方向每次走多远
超参数:在学习之前,人为指定的值
如何选择学习率?
在这里插入图片描述
学习率太小:计算梯度是一件很“贵”的事情,学习率太小会导致网络收敛过慢,要经过非常多的步骤
学习率太大:会导致网络无法收敛,一直在震荡,并没有真正地在下降

2. 小批量随机梯度下降(最常见)

梯度下降中,每次计算梯度,要对损失函数求导,而损失函数是对所有样本的平均损失。这意味着求一次梯度,要计算整个样本,计算代价太大。
近似的办法:小批量随机一度下降
在这里插入图片描述
图片4

3. 总结

  1. 梯度下降通过不断沿着梯度的反方向更新参数求解
  2. 小批量随机梯度下降是深度学习默认的求解算法
  3. 两个重要的超参数是批量大小和学习率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值