Pytorch学习day1

pytorch中常用的包

torchvision

torchvision包包含了目前流行的数据集,模型结构和常用的图片装换工具。
torchvision.datasets 包含数据集:

  • MNIST
  • COCO
  • LSUN Classification
  • ImageFolder
  • ImageNet-12
  • CIFAR10 and CIFAR100
  • STL10
    由于以上datasets都是torch.utils.data.Dataset的子类,可以通过torch.utils.data.DataLoader使用多线程。
    例如:
    torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads)

也可以将自己的数据集,调用DataLoader函数。具体步骤请参看multi_label_classifier.py及dataset_processing.py1

torchvision.transforms 对PIL.Image进行变换:

  • torchvision.transforms.Compose(transforms): 将多个transforms组合起来
  • torchvision.transforms.CenterCrop(size):将给定的PIL.Image进行中心切割,得到给定的size的图片。
  • torchvision.transforms.RandomCrop(size):切割中心点的位置随机选取。
  • torchvision.transforms.ToTensor():将取值范围是[0,255]的PIL.Image或者shape为(H,W,C)的numpy.ndarray,装换成shape为[C,H,W],取值范围是[0,1.0]的torch.FloadTensor。
  • torchvision.transforms.ToPILImage():将shape为[C,H,W]的Tensor或shape为(H,W,C)装换成shape为[C,H,W],取值范围是[0,1.0]的torch.FloadTensor。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值