【博弈论】HDU 1848 Fibonacci again and again

Fibonacci again and again 【传送门】

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13754    Accepted Submission(s): 6038

Problem Description

任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。

Sample Input

1 1 1

1 4 1

0 0 0

Sample Output

Fibo

Nacci

Author

lcy

Source

ACM Short Term Exam_2007/12/13

详解专题链接:https://blog.csdn.net/lesileqin/article/details/98525887

AC代码:

#include<iostream> 
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#include<set>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define INF 999999
#define MOD 2009
#define MAXN 1005
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long ll;

int n,k,x[MAXN];
ll a[MAXN];
int grundy[MAXN];

void prepare(){
    a[0]=1,a[1]=2;
    for(int i=2;i<20;i++)
        a[i]=a[i-1]+a[i-2];
}

void solve(){
    grundy[0]=0;
    int max_x= *max_element(x,x+n);
    for(int j=1;j<=max_x;j++){
        set<int> s;
        for(int i=0;i<k;i++){
            if(a[i]<=j)
                s.insert(grundy[j-a[i]]);
        }
        int g=0;
        while(s.count(g)!=0) g++;
        grundy[j]=g;
    }
    int res=0;
    for(int i=0;i<3;i++)
        res^=grundy[x[i]];
        //cout << grundy[x[i]] << " ";
    if(res!=0)
        cout << "Fibo\n";
    else
        cout << "Nacci\n";
    //cout << res << endl;
}

int main(){
    ios::sync_with_stdio(false);
    prepare();
    int a,b,c;
    k=20;
    while(cin >> a >> b >> c && a+b+c){
        x[0]=a,x[1]=b,x[2]=c;
        solve();
    }
    return 0;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值