【集合代数(二)】

布尔代数

任何映射 M 2 → M M^2\rightarrow M M2M被称为集合上的二元运算。映射 M → M M\rightarrow M MM被称为集合上的一元运算。集合 M M M如果满足以下公理,则引入两个二元运算 + + +(加法)和 ⋅ · (乘法)、一个一元运算 ∗ * (补)和两个指定元素 0 0 0 1 1 1 的集合 称为布尔代数:
1. x + y = y + x , x y = y x x+y=y+x,xy=yx x+y=y+x,xy=yx(交换律)
2. ( x + y ) + z = x + ( y + z ) , ( x y ) z = x ( y z ) (x+y)+z=x+(y+z),(xy)z=x(yz) (x+y)+z=x+(y+z),(xy)z=x(yz)(结合律)
3. ( x + y ) z = x z + y z , x y + z = ( x + z ) ( y + z ) (x+y)z=xz+yz,xy+z=(x+z)(y+z) (x+y)z=xz+yz,xy+z=(x+z)(y+z)(分配律)
4. x x = x , x + x = x xx=x,x+x=x xx=x,x+x=x(幂等性)
5. x + 0 = 0 , x 1 = x , x 0 = 0 , x + 1 = 1 x+0=0,x1=x,x0=0,x+1=1 x+0=0,x1=x,x0=0,x+1=1(同一律)
6. x + x ∗ = 1 , x x ∗ = 0 x+x^*=1,xx^*=0 x+x=1,xx=0(补元律)
布尔代数的表示法 < M ; + , ⋅ , 0 , 1 > <M;+,\cdot,0,1> <M;+,,0,1>。接下来我们来看看布尔代数的两个例子:

例 1. 假设 M M M是一个集合, 2 M : = { X : X ⊆ M } 2^M:=\begin{Bmatrix} X:X\subseteq M \end{Bmatrix} 2M:={X:XM} —集合的布尔值。如果 X + Y = X ∪ Y , X Y = X ∩ Y , X ∗ = X ‾ = M ∖ X , 0 = ∅ , 1 = M X+Y=X\cup Y,XY=X\cap Y,X^*=\overline{X}=M\setminus X,0=\varnothing,1=M X+Y=XY,XY=XY,X=X=MX,0=,1=M,那么布尔值 2 M 2^M 2M是布尔代数。这个代数称为给定集合的子集代数。

例 2. 如果布尔运算定义如下表所示,则集合 { 0 , 1 } \begin{Bmatrix} 0,1 \end{Bmatrix} {0,1}是布尔代数:

x x x y y y x + y x+y x+y x y xy xy x ‾ \overline{x} x
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

该布尔代数被称为逻辑代数。
作为一个举例我们考虑布尔代数 M M M的两个属性,它们直接来自布尔代数的定义。首先,对于任意 x , y ∈ M x,y\in M x,yM满足吸收定律
x ( x + y ) = x + x y = x x(x+y)=x+xy=x x(x+y)=x+xy=x
根据分配律和幂等性, x ( x + y ) = x x + x y = x + x y x(x+y)=xx+xy=x+xy x(x+y)=xx+xy=x+xy,另一方面, x + x y = x 1 + x y = x ( 1 + y ) = x ( y + 1 ) x+xy=x1+xy=x(1+y)=x(y+1) x+xy=x1+xy=x(1+y)=x(y+1)
其次,要确保关系 x + y = y 且 x y = x x+y=y 且xy=x x+y=yxy=x彼此等价(兼容性)。如果 x + y = y x+y=y x+y=y,那么 x y = x ( x + y ) = x xy=x(x+y)=x xy=x(x+y)=x(该等式根据吸收率可得)。相反地,如果 x y = x xy=x xy=x,那么 x + y = x y + y = y + y x = y x+y=xy+y=y+yx=y x+y=xy+y=y+yx=y
每个布尔代数 M M M都可以偏序排列,这与二元运算密切相关,让我们考虑定义地二元关系:
x ≺ y 当且仅当 x ≠ 和 x + y = y x\prec y当且仅当 x\neq 和 x+y=y xy当且仅当x=x+y=y
该关系满足偏序公理,这种关系的不对称性直接来自定义。传递性得自加法交换律和结合律。如果 x ≺ y 且 y ≺ z x\prec y且y\prec z xyyz那么 x + z = x + ( y + z ) = ( x + y ) + z = y + z = z x+z=x+(y+z)=(x+y)+z=y+z=z x+z=x+(y+z)=(x+y)+z=y+z=z。如果在这种情况下,我们假设 x = z x=z x=z,那么 z ≺ y 且 y = z + y = y + z = z z\prec y且y=z+y=y+z=z zyy=z+y=y+z=z,这与关系 ≺ \prec 的不对称性相矛盾。 x ≺ y x\prec y xy的相容性当且仅当 x y = x xy=x xy=x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值