一、引言
土地利用变化是全球环境变化的重要组成部分,对生态系统、气候和人类社会产生深远影响。利用遥感技术可以快速、准确地获取土地利用信息,监测其变化情况。本文将详细介绍如何使用 GEE 对特定区域的 Landsat 影像进行处理,实现土地利用分类和(动态)变化监测。
二、代码实现
2.1 定义研究区域
// ------------ 1. 定义研究区(矩形范围)------------
var west = 117.50; // 东经117°50′
var south = 30.49; // 北纬30°49′
var east = 117.54; // 东经117°54′
var north = 30.53; // 北纬30°53′
// 创建研究区域
var studyArea = ee.Geometry.Rectangle([west, south, east, north]);
通过定义经纬度范围,创建了一个矩形的研究区域。
2.2 定义时间范围
// ------------ 2. 定义时间范围(约 5 年)------------
var startDate1 = '2015-01-01';
var endDate1 = '2015-12-31';
var startDate2 = '2020-01-01';
var endDate2 = '2020-12-31';
设置了两个时间范围,分别为 2015 年和 2020 年,用于对比不同时间的土地利用情况。
2.3 加载并筛选 Landsat 影像
// ------------ 3. 加载 Landsat 影像并筛选 ------------
function getLandsatImageCollection(startDate, endDate) {
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(studyArea)
.filterDate(startDate, endDate)
.median();
return collection.clip(studyArea);
}
var image1 = getLandsatImageCollection(startDate1, endDate1);
var image2 = getLandsatImageCollection(startDate2, endDate2);
定义了一个函数 getLandsatImageCollection
,用于加载并筛选指定时间范围和研究区域内的 Landsat 8 影像,并计算影像集合的中值,最后裁剪到研究区域。
2.4 选择用于分类的波段
// ------------ 4. 选择用于分类的波段 ------------
var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7'];
选择了 Landsat 8 的 6 个波段用于后续的分类。
2.5 定义训练样本
// ------------ 5. 定义训练样本(示例,需要根据实际情况修改) ------------
// 假设我们有水体、植被、建设用地三类
var water = ee.Geometry.Point([117.51, 30.50]);
var vegetation = ee.Geometry.Point([117.52, 30.51]);
var builtup = ee.Geometry.Point([117.53, 30.52]);
var trainingPoints = ee.FeatureCollection([
ee.Feature(water, {class: 0}),
ee.Feature(vegetation, {class: 1}),
ee.Feature(builtup, {class: 2})
]);
var training1 = image1.select(bands).sampleRegions({
collection: trainingPoints,
properties: ['class'],
scale: 30
});
var training2 = image2.select(bands).sampleRegions({
collection: trainingPoints,
properties: ['class'],
scale: 30
});
定义了三个训练样本点,分别代表水体、植被和建设用地,并将其存储在一个特征集合中。然后,从影像中提取这些样本点的波段值,用于训练分类器。
2.6 训练分类器
// ------------ 6. 训练分类器 ------------
var classifier1 = ee.Classifier.smileRandomForest(10).train({
features: training1,
classProperty: 'class',
inputProperties: bands
});
var classifier2 = ee.Classifier.smileRandomForest(10).train({
features: training2,
classProperty: 'class',
inputProperties: bands
});
使用随机森林分类器对两个时间的训练数据进行训练。
2.7 进行分类
// ------------ 7. 进行分类 ------------
var classifiedImage1 = image1.select(bands).classify(classifier1);
var classifiedImage2 = image2.select(bands).classify(classifier2);
对两个时间的影像进行分类,得到分类结果影像。
2.8 可视化结果
// ------------ 8. 可视化 ------------
Map.centerObject(studyArea, 12);
Map.addLayer(image1, {bands: ['B4', 'B3', 'B2'], min: 0, max: 0.3}, 'Landsat 2015');
Map.addLayer(image2, {bands: ['B4', 'B3', 'B2'], min: 0, max: 0.3}, 'Landsat 2020');
Map.addLayer(classifiedImage1, {min: 0, max: 2, palette: ['blue', 'green', 'red']}, 'Classification 2015');
Map.addLayer(classifiedImage2, {min: 0, max: 2, palette: ['blue', 'green', 'red']}, 'Classification 2020');
将原始影像和分类结果影像添加到地图上进行可视化。
2.9 计算土地利用变化
// ------------ 9. 计算土地利用变化 ------------
var changeImage = classifiedImage2.subtract(classifiedImage1);
Map.addLayer(changeImage, {min: -2, max: 2, palette: ['blue', 'white', 'red']}, 'Land Use Change');