【论文阅读笔记】Dynamic backdoor attacks against federated learning

文章提出了动态后门攻击的新方法,通过将元学习应用于后门攻击,创建共生网络,增强恶意模型的持久性和隐蔽性。这种方法允许攻击者在不显著影响主任务性能的情况下,动态调整后门任务。实验表明,这种攻击策略能更快地适应新任务,同时保持后门效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个人阅读笔记,如有错误欢迎指出

arXiv 2020 [2011.07429] Dynamic backdoor attacks against federated learning (arxiv.org)

问题:

        目前现有的研究主要集中在静态后门攻击上,即注入的毒模式不变,然而,FL是一个在线学习框架,并且对抗性目标可以由攻击者动态改变,传统算法需要从头开始学习一个新的目标任务,这可能在计算上很耗时,并且需要大量的对抗性训练示例。

创新:

        将元学习与后门攻击联系起来

        为恶意攻击者提出了一种新的训练架构,称为共生网络,这种策略可以使后门攻击相对于对抗性后门攻击更持久。

方法:

恶意客户端的共生网络

原因:在动态后门攻击设置下,攻击者注入与以前的数据分布完全不同的新训练样本,用全局模型代替局部模型可能会降低模型性能。

参数

        L_{class}代表在主任务以及目标任务上的准确率

        L_{dist}​计算本地模型与全局模型的距离,实现隐蔽性

        p为平衡L_{class}​以及L_{dist}的一个因子

        恶意客户端目标函数修改如下:L = (1-p) \cdot L_{class} + p \cdot L_{dist}

        以往的平衡因子p是手动设置的,不灵活,很容易偏离或停留在局部最优点。这篇采用全局模型在后门数据上的准确度来决定,动态权衡优化后门效果和隐蔽性。

动态后门攻击

        目的:利用之前的经验快速适应新的任务,取得一个初始化参数\theta^*,使得模型快速收敛。如下图,(a)显示正常FL需要从头开始学习新任务,并采取许多SGD步骤来收敛;(b)利用了以前的经验,使得初始模型参数\theta^*更接近每个任务的最佳参数\theta, 只有几个SGD步骤可以保证收敛

        方法:全局模型需要学习一个广泛适用于所有任务而不是单个任务的内部特征。通过最小化采样任务的总损失来实现这一目标:

        其中,\theta_i^*为使得模拟在主任务以及目标后门任务达到最高准确率的参数,通过以下方程求出:

        上述优化存在二阶导数难以求解。为求解上述目标参数,目标是学习一个广泛适用于所有任务的内部特征,即全局模型参数需要接近每个任务的最优参数,使用欧氏距离作为距离度量得到以下方程:

        利用元学习Reptile的思路进一步求解,通过这个方法也可以将二阶导数转换为了一阶导,公式如下:

其中,\Vert T_{sub} \Vert代表本轮任务的总数,也是更新的步长

        为了使得攻击更加持久、稳健,使用了放大策略,在执行模型聚合时,恶意模型的权重将按更大的因子放大,且因子不影响梯度方向,方程得到如下修改:

算法描述:

客户端:

服务器端:

实验:

        实验设置:在Episode1中,先在六个投毒客户端中训练模型,随后使用此经验数据在Episode2中进行另一个任务的投毒,加快模型收敛。

        每个恶意客户端后门如下:

        精度、持久性

        (a)(b)(c)显示共生网络得到的p值在大多数情况下比手动设置p值在后门的准确率上较高,且随着训练轮数增加有时能够保持

        (d)(e)(f)显示攻击基本上没有影响主任务上的准确性

        收敛速度

        在 episode 1中为恶意客户端使用了初始投毒,将新的嵌入文本“KDD”注入到客户端的本地图像中𝐶1,并在 episode 2中使用它作为我们新的中毒数据集。

        以联邦平均为标准,基于元学习的方法在几轮后优于联邦学习并且达到相同的效果需要更少的轮数

总结

优点:

        将元学习的概念引入到服务器端的采样,将优化二阶导数的目标转化成了一阶导

        在攻击效果和隐蔽性之间做了动态的权衡

局限性:

        同时改变了客户端和服务器的训练策略,对攻击方的要求较高

        只是全局和恶意之间距离做了约束而非相似度,没有很好的解决联邦学习里的遗忘问题

        实验部分不够充分,没有在sota评估在防御上的效果

        L_{dist}计算全局和恶意之间的欧式距离相当于也是对梯度的角度做了约束,可能不能很好的攻击基于统计的防御方法

### FLPurifier 后门防御机制及其基于解耦对比训练的实现 FLPurifier 是一种针对联邦学习中后门攻击的有效防御方法。其核心思想在于利用解耦对比训练来识别并过滤掉被污染的数据或模型更新,从而保护全局模型免受恶意客户端的影响[^1]。 #### 解耦对比训练的工作原理 解耦对比训练是一种新颖的技术框架,旨在分离正常数据分布与异常(即受到后门攻击影响)的数据分布。具体而言,在联邦学习环境中,该技术通过对本地模型参数进行正则化约束,使得模型能够更专注于捕获干净样本的核心特征,而减少对潜在触发器模式的关注[^2]。 以下是其实现的关键组成部分: 1. **局部对比损失函数的设计** 对比损失函数用于衡量不同类别之间的相似性和差异性。在 FLPurifier 中引入了一种特殊的对比损失形式,它不仅考虑了标准分类任务的目标,还额外加入了对于可能存在的后门触发条件下的鲁棒性的考量[^3]。 ```python import torch.nn.functional as F def contrastive_loss(anchor, positive, negative): pos_dist = F.pairwise_distance(anchor, positive) neg_dist = F.pairwise_distance(anchor, negative) margin = 1.0 # 可调超参 loss = torch.clamp(margin + pos_dist.pow(2) - neg_dist.pow(2), min=0).mean() return loss ``` 2. **跨轮次一致性检测** 联邦学习的一个重要特性是多轮迭代优化过程。为了增强系统的安全性,FLPurifier 提出了跨多个通信回合的一致性验证方案。此方案会跟踪各参与方提交梯度的变化趋势,并标记那些偏离群体行为显著的个体作为可疑对象加以排除[^4]。 3. **集成净化策略** 当发现某些设备存在篡改嫌疑时,采取相应的补救措施至关重要。这一步骤通常涉及重新加权贡献权重或者完全忽略这些不可信输入项的操作逻辑设计[^5]。 综上所述,借助上述提到的各项关键技术手段组合运用,最终实现了高效抵御各类复杂场景下可能出现的新颖类型后门威胁的能力提升效果明显优于传统单纯依赖统计分析的方法论体系架构之上构建起来更加稳固可靠的防护屏障作用十分突出值得深入研究探讨推广普及应用价值极高前景广阔令人期待不已!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值