【论文阅读笔记】A Stability-Enhanced Dynamic Backdoor Defense in Federated Learning for IIoT

个人阅读笔记,如有错误欢迎指出!

期刊:IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS(TII) A Stability-Enhanced Dynamic Backdoor Defense in Federated Learning for IIoT | IEEE Journals & Magazine | IEEE Xplore

问题:

        1、在工业物联网领域由于设备和所收集到数据不同,存在非独立同分布问题

        2、在非独立同分布场景下,现有的联邦后门防御策略难以区分具有较大异质性的良性客户端与恶意客户端

创新:

        发现了客户端数据的异质性程度能反映在模型更新方向上

        将非独立同分布场景切割成了多个内部近似独立同分布的簇,在切割后的簇上进行过滤

方法:

       观察: 通过衡量四个客户端更新方向之间的余弦相似度,评估四个客户端模型在迭代训练过程中更新方向的一致性,图a为在MNIST数据集上四个客户端在各类别上的数据分布情况,图b为50轮余弦相似度热力图。得出结论数据分布越相似,模型在训练过程中更新方向越一致。

         根据该发现,通过每轮观察余弦距离实现将非独立同分布场景切割为多个近似独立同分布簇,以下是对切割簇的定义

方法总览 

         方法分为三个步骤:动态客户端匹配、模型过滤、鲁棒聚合与更新。

        动态客户端匹配:

         具体方法为测量各客户端上传到服务器的梯度和全局模型梯度之间的余弦相似度

        使用HDBSCAN对余弦相似度\alpha聚类,该聚类方法是根据点的密度聚类,不预先设定簇的个数,符合联邦现实场景,因为防御方无法先验的知道客户端的数据分布情况。由于是对梯度角度进行的,因此聚类得到的结果为对客户端的划分,簇内环境可以视为近似IID环境。(此外,由于恶意客户端被控制下植入相同的触发器和相同的训练模式,其模型更新也更相似,该步骤也能初步将恶意客户端聚类到一个簇中)

        对每个簇进行初步聚类,得到簇内全局模型用于后续步骤。

        模型过滤:

        以相同的比例从动态匹配得到的各个簇采样(保证不同分布的客户端都能公平的参与联邦训练过程)

        对采样到的客户端使用层次聚类,聚成两个簇,拥有点数更少的簇视为潜在的恶意客户端簇

        对点数更多的良性簇使用基于统计的聚合方法(Median或Mean等)得到簇外全局模型

        鲁棒聚合与更新:

        将簇外全局模型下发到各个簇中,和簇内全局模型相聚合得到适配于该簇数据分布的个性化全局模型,下发至该簇内用于更新簇内客户端。

        对于模型过滤中被过滤的客户端所在的簇,直接下发簇外全局模型,以避免第一部中被误分的良性客户端无法更新 

实验

        在不同攻击下的防御效果与对比试验 

        

        在不同non-IID场景下对比Median方法的稳定性 

        non-IID场景下结果 

        不同trigger下的防御效果

 总结

        切合工业物联网场景,思路还是很巧妙地,通过模型的更新方向将non-IID转换为多个近似IID场景

基于模拟的渐变增强多输出高斯过程模型是一种机器学习算法,广泛用于从模拟数据中推断多个输出变量之间的关系。它是一种有监督学习模型,通过将一组输入变量映射到一组输出变量来进行预测。 渐变增强是指该模型能够通过引入梯度信息来增强预测的准确性。这个过程可以通过在高斯过程模型中使用导数信息来实现,因为高斯过程可以通过导数来表达对输入变量的敏感性。这种方法可以提高对于非线性问题和高维数据的预测能力。 该模型的优点是能够进行多输出预测,可以针对复杂的非线性关系进行建模,并且在训练过程中可以同时考虑梯度信息和预测误差。这意味着它可以减少误差传播的风险,从而更加鲁棒。 该模型在各种应用中都有广泛的用途,例如材料设计、化学反应、气候模拟和生物学研究等。然而,它也有一些局限性,例如需要大量的模拟数据进行训练,并且容易发生过度拟合的问题。因此,在应用模型时需要小心处理这些问题。 总之,基于模拟的渐变增强多输出高斯过程模型是一种强大的机器学习算法,可用于从模拟数据中预测复杂的多输出变量之间的关系。它是一种有监督学习方法,并利用梯度信息来提高预测的准确性。该模型在各种应用中都有广泛的用途,但也需要谨慎处理以避免出现误差传播和过度拟合的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值