【论文阅读笔记】Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

该文研究了针对拜占庭鲁棒联邦学习的模型攻击,提出了针对不同防御策略的攻击方法,如Krum、Trimmedmean。通过优化问题设计,攻击者在训练阶段操纵本地模型,影响全局模型。同时,文章探讨了基于错误率和损失函数的防御策略,并发现这些防御方法并不能完全抵挡攻击,且可能导致错误率增加。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个人阅读笔记,如有错误欢迎指出!

会议: Usenix 2020 [1911.11815] Local Model Poisoning Attacks to Byzantine-Robust Federated Learning (arxiv.org)

问题:

        模型攻击对拜占庭鲁棒性联邦学习的攻击效果尚未清楚

创新点:

        1、基于不同防御方法,设计了具有针对性的模型攻击方式

        2、概括了基于错误率以及基于损失函数的防御方法,测试了两种防御方法的效果。

方法:

        攻击场景:training phase中对基于本地训练数据的模型在训练过程中进行攻击

        攻击者的要求:控制部分参与模型中的训练参数

        本地模型攻击:

                主要挑战:如何将被攻击的本地模型进行改造并发送至服务器

                方法:对投毒后的本地模型进行约束,转化为每轮中的优化问题

        定义优化:

                定义一个方向量,1表示当前梯度增加,-1表示当前梯度减小,其次定义攻击前的梯度与攻击后的梯度,那么优化问题的实质就是,使得攻击后的梯度与攻击前的梯度差别尽量大。

                \textbf{w}为未受到攻击时的模型,\textbf{w}'_1​为攻击后的模型,s为所有模型参数变化方向的列向量

攻击Krum

                Krum原理是选择相近的模型作为全局模型,则可以约束使其他的本地模型都接近被攻击模型,从而达到使Krum选择攻击模型作为全局模型的目的

        场景:full knowledge

        优化问题的约束是高度非线性的,并且局部模型的搜索空间很大。为了求解需要做两个近似

                对\textbf{w}'_1约束为:\textbf{w}_1' = \textbf{w}_{Re} - \lambda \textbf{s},其中\textbf{w}_{Re}为当前训练轮数中从聚合器收到的全局模型,\lambda > 0。具体描述了投毒模型与全局模型的差距。

                令被控制的c-1个模型尽可能的接近,则\textbf{w}'_1只需要攻击模型与m-2c-1良性模型的距离最小就会使其被Krum选中

        优化目标如下:选取最大的\lambda值;使Krum选中攻击模型;攻击模型满足全局模型(previous)的距离约束;被控制的c-1个模型近似于攻击模型

        上述优化问题的目标函数如下,其中s^T(w-w_{Re})为常数,s^Ts=d d是模型参数个数,因此优化问题即为对\lambda的优化

        对于求解\lambda,首先定义其上界:

        给定上界后,则可用二进制搜索寻找最优\lambda,先使用此上界求解模型\textbf{w}'_1′​的值,若没有被Krum选中,则将\lambda减半继续。

        场景:partial knowledge

        攻击者不知道良性设备上的数据及模型以及模型改变的方向

        方法:基于被攻击客户端的模型模拟良好设备的本地模型。

        计算被攻击前的模型的均值

                使用平均模型估计模型的变化方向:若收到的全局模型的参数大于本地模型的参数,则变化方向为1,否则为-1,定义\overline{\textbf{s}}估计为变化方向向量。

                以被攻击前的本地模型视为良性客户端的本地模型,以此构建模型。

        优化问题化简如下:如同上述方法求解模型,若最终结果仍不合适则添加另一个构建的模型进行求解。

攻击Trimmed mean

        场景:full knowledge

       \text w_{m a x, j}为这一轮中良性模型中的第j个模型参数中的最大值,\text w_{min, j}为最小值

        如果\textbf{s}_j = -1,则选取大于\text w_{m a x, j}的参数c作为c个受损工作设备上的第j个局部模型参数,否则选取任一小于\text w_{min, j}的数作为构建的模型参数。为避免被检测为异常值,c需要尽量接近\text w_{min, j},即c取值范围为[\text w_{max.j},b \cdot \text w_{mim,j}][\text w_{min, j} / b, \text w_{min, j}]中。实验中b取值为2。

        场景:partial knowledge

        同样,以被攻击前的模型作为良性客户端的模型以估计模型的变化方向

        以被攻击前的模型作为良性客户端的模型估计\text w_{min, j}以及\text w_{m a x, j}值。具体方法为计算均值以及标准差,并以作为高斯分布的参数,\text w_{m a x, j}估计为d大于\mu_j+3 \sigma_j或者 \mu_j+4 \sigma_j​,\text w_{min, j}估计为大于\mu_j-3 \sigma_j或者\mu_j-4 \sigma_j

攻击Median

        同Trimmed mean的攻击方法一致。

实验        

        数据集:MNIST,Fashion-MNIST,CH-MNIST。

        采用的分类器:LR以及DNN

        攻击方法比较:Gaussian attack、Back-gradient optimization based attack

        联邦学习参数:

        攻击效果比较:显著优于其他攻击算法

        Krum在大部分情况下略于trimmed mean以及median

        攻击的效果的错误率可能与数据维度有关。

        与集中学习相比,联邦学习的错误率高于集中学习。与平均聚合相比,拜占庭鲁棒聚合规则提高了无攻击时的错误率,但平均聚合在存在攻击时模型无用。

        攻击者数量百分比对攻击效果的影响:一般情况下随着攻击者数量增加,攻击效果加强,标签反转攻击不明显,Gaussian attacks基本不变

        非IID程度对联合学习的影响:图3显示了MNIST上不同程度的非IID的比较攻击的错误率。所有攻击(包括无攻击)的错误率随着非IID程度的增加而增加。

        联邦学习参数对实验的影响:

        SGD训练回合数:随着回合数增加而下降

        工作设备总数:攻击者固定为20%,工作设备越多攻击效果越好

        每次迭代中选择的工作设备数量对我们的攻击的影响:

        trimmed mean的参数\beta\beta越大模型被修剪越多,效果越差。

        Krum中的\epsilon\epsilon越小,被投毒的模型距离越小,越可能被聚合器选中,攻击效果越好。

        攻击的轮数:越多效果越好。

        其他聚合策略:选择测试错误率最低的模型,攻击效果稍微降低但仍然有效。

        聚合规则未知时:基于Krum的攻击能够转移到Trimmed mean以及median,基于Trimmed mean的攻击不适用与Krum,适用于median。

        与反向梯度优化的攻击对比:本文的方法更加有效

        针对模型攻击的防御

        防御方法:

        基于错误率的拒绝防御(ERR)

                防御方法:聚合器有用一个数据集用以检测错误率,计算包含客户端提交的模型以及去除提交的模型的模型错误率,分别记为E_A​以及E_B​,则以E_A - E_B定义为模型对错误率的影响,聚合时删除拥有较大错误率影响的模型。

        基于损失函数的拒绝防御(LFR)

                防御方法:聚合器计算包含以及去除模型的交叉熵损失函数值L_A以及L_B​,将L_A - L_B定义为模型对全局模型的损失影响,聚合时删除拥有较大损失印象的模型。

        上述两种方法联合(Union)

                防御效果:LFR在大部分情况下比ERR有效,Union基本与LFR相同,LFR以及Union只能抵御部分防御,且进行部署防御时错误率将增加。

<think>好的,我现在需要帮助用户解决从torchvision导入datasets和transforms时报错的问题,报错位置在main_fed_cifar_cnn.py的第9行。首先,我需要根据用户提供的引用信息和常见解决方案来思考可能的原因和解决办法。 用户提到了三个引用,其中引用[2]提到了安装cairo库时的问题,以及解决依赖项的经验。这可能暗示环境配置或依赖库的问题。但torchvision的问题通常和PyTorch版本或安装完整性有关。 首先,常见的torchvision导入错误可能有以下几个原因: 1. **PyTorch和torchvision版本不兼容**:用户可能安装了不匹配的版本,导致无法正确导入模块。 2. **未正确安装torchvision**:可能只安装了PyTorch而没有安装torchvision,或者安装过程中出现错误。 3. **环境路径问题**:Python环境可能没有正确识别安装的库,尤其是在使用虚拟环境或conda环境时。 4. **系统依赖项缺失**:某些情况下,torchvision需要系统级的库支持,比如图像处理库。 接下来,我需要根据这些可能的原因逐一分析解决方法,并结合用户提供的引用信息。引用[2]中提到用户曾遇到安装cairocffi和editdistance的问题,并通过conda安装cairo解决了问题。这可能意味着用户使用的是conda环境,因此推荐使用conda来安装或更新torchvision可能更有效。 步骤分解: 1. **检查PyTorch和torchvision版本兼容性**:用户需要确认两者版本是否匹配。可以查看官方文档的版本对应表,例如PyTorch 1.12需要对应的torchvision版本。 2. **重新安装或更新torchvision**:使用pip或conda命令进行安装,确保安装过程中没有错误。conda有时能更好地处理系统依赖,比如引用[2]中的cairo问题。 3. **验证安装环境**:确保运行代码的环境是安装库的环境,特别是使用虚拟环境时,激活正确的环境。 4. **安装系统依赖项**:例如,在Linux上可能需要安装libjpeg或zlib等库,可以通过系统包管理器安装。 5. **检查CUDA和cuDNN版本**:如果使用GPU,需要确保PyTorch版本与CUDA驱动兼容。 此外,用户的问题出现在main_fed_cifar_cnn.py中,可能涉及联邦学习的代码。引用[3]提到联邦平均的实现,可能与代码结构无关,但需确保代码中没有其他导入错误或语法问题。 最后,需要建议用户尝试以上步骤,并提供具体的命令示例,如使用conda安装或pip安装指定版本。同时,提醒用户注意环境激活和依赖项安装,如引用[2]中提到的通过conda解决cairo问题的经验。</think>### 逐步解决方案 #### 1. 检查版本兼容性 PyTorch和torchvision版本必须严格匹配。以下是官方推荐的版本对应关系示例: - PyTorch 1.12.0 → torchvision 0.13.0 - PyTorch 2.0.1 → torchvision 0.15.2 **操作步骤**: ```bash # 查看当前安装版本 python -c "import torch; print(torch.__version__)" python -c "import torchvision; print(torchvision.__version__)" ``` #### 2. 重新安装匹配版本 使用conda或pip安装指定版本的torchvision(推荐优先使用conda,因其能自动处理系统依赖): ```bash # conda方式(需指定与PyTorch匹配的版本) conda install torchvision==0.13.0 -c pytorch # 假设PyTorch版本为1.12.0 # pip方式 pip install torchvision==0.13.0 --no-cache-dir ``` #### 3. 验证环境激活状态 确保代码运行在已安装库的环境中: ```bash # 检查当前Python环境路径 which python # Linux/Mac where python # Windows ``` #### 4. 安装系统级依赖(Linux/Windows) - **Linux**: ```bash sudo apt-get install libjpeg-dev zlib1g-dev libopenblas-dev ``` - **Windows**:需通过conda安装预编译的库: ```bash conda install -c conda-forge libjpeg-turbo openblas ``` #### 5. 清理并重装(针对安装残留问题) ```bash pip uninstall torch torchvision -y pip cache purge pip install torch torchvision --index-url https://download.pytorch.org/whl/cu117 # 示例CUDA 11.7版本 ``` --- ### 相关问题 1. **如何检查PyTorch与CUDA的兼容性?** - 运行 `python -c "import torch; print(torch.cuda.is_available())"` 验证CUDA是否可用[^2]。 2. **conda和pip混用导致环境混乱怎么办?** - 建议使用 `conda clean --all` 清理缓存后,创建新环境重新安装。 3. **联邦学习代码中导入torchvision失败会影响哪些功能?** - 数据加载(如CIFAR-10)和图像预处理(`transforms`模块)会直接失效[^1][^3]。 [^1]: 引用[1]提到代码封装了数据相关功能,依赖`torchvision.datasets`加载标准数据集。 : 引用[2]强调环境配置问题,如系统路径和依赖库安装。 [^3]: 引用[3]指出联邦平均的实现需要数据预处理模块支持。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值