3D分割之SAGA训练流程解读

本文详细解读了3D分割算法SAGA的训练过程,涉及特征提取、SAM模型的使用、3DGS模型的语义特征增强以及训练中的优化策略。介绍了如何从图像和mask中提取特征,通过映射模型将特征降至低维空间,并进行平均池化处理。同时,文章还讨论了在训练过程中采用的损失函数和正则项,以及优化器的参数更新方式。
摘要由CSDN通过智能技术生成

训练之前,会先提取2种特征

一种是每张图片的image encoding, 它的size是(64,64),代表每个像素处的特征向量。这个向量用于特征匹配(选中的目标和每个像素的相似度)。
一种是SAM提取的所有mask(用于计算mask所在目标的特征向量)。

extract_features.py提取的是SAM模型predictor.set_image的image encoding (1,256,64,64)
extract_segment_anything提取的是SAM的generate产生的自动mask
这里保存每张图片所有mask, float形式,resize到(200,200), 原图是(1024,1024).
SAM用法:
predictor.predict预测的是含有prompt的mask, 而generate是自动产生所有mask.

训练3DGS的语义特征在traiin_contrastive_feature.py

3DGS模型的每个点增加语义特征
feature_dim=32
只不过Scene里面有一个gaussians还有一个feature_gaussians, 刚开始都是load scene_point_cloud.ply(3DGS),后面只用feature_gaussians,gaussians会删除。

feature_gaussians里面的get_po

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值