定义roads数组,每个元素长度为3,具体为[from, to, 该条road的distance],
其中road是双向的(也就是无向图),可以走多次(走不通可以折回来),
需要找的是城市1到城市n的路径中,每个路径由多个road组成,求最短的那个road的长度。
注意不是求最短路径,而是求路径中最短的那个road.
思路:
统一下说法:路径是由多个road组成,road就是数组中每个[from, to, 该条road的distance]。
由于要求城市1到n的最短road,
首先需要有一条从1到n的路径,这就需要建立无向图,然后BFS走过去。
因为不需要求最短路径,只需要把沿途road distance的最小值记录下来。
那么就在遍历中不断记录最小distance即可。
比较迷惑人的是每个road是可以多次往返的,那是不是不需要用visited记录已经走过的点了?
那不能,因为这是无向图,不记录visited就会陷入无限循环。
那如果像Example2那样,城市1走到城市2然后发现走不通要折回来,但是1已经被访问过了,岂不是就折不回来了么。
注意你不需要真的折回来,1走到2的时候你只需要记下最小distance,
还是Example2, 从1出发,
BFS的queue里有1-2的road, 还有1-3的road,1-2走不通就记下distance最小值就不走了,下一步直接走1-3。
再次提醒不是求最短路径,只需要记录沿途出现的road distance的最小值。
需要做的就是遍历所有可能的road,记录下最小distance.
也可以这样理解,只需要从1出发,记录每条走过的road的最小distance即可。
因为题目中说1肯定能到达n,就算中间走到无法到达的点,也能折回,并不计算总路径。
class Solution {
public int minScore(int n, int[][] roads) {
List<Node>[] graph = new ArrayList[n+1];
Queue<Node> queue = new LinkedList<>();
int minDis = Integer.MAX_VALUE;
boolean[] visited = new boolean[n+1];
for(int i = 0; i <= n; i++) graph[i] = new ArrayList<Node>();
//建立无向图
for(int[] road :roads) {
graph[road[0]].add(new Node(road[1], road[2]));
graph[road[1]].add(new Node(road[0], road[2]));
}
queue.offer(new Node(1, Integer.MAX_VALUE));
while(!queue.isEmpty()) {
Node cur = queue.poll();
//这一步一定要放在判断visited前面,每一步都要记录下最小distance
minDis = Math.min(minDis, cur.dis);
if(visited[cur.dest]) continue;
for(Node nextNode : graph[cur.dest]) queue.offer(nextNode);
visited[cur.dest] = true;
}
return minDis;
}
}
class Node{
int dest;
int dis;
public Node(int dest, int dis) {
this.dest = dest;
this.dis = dis;
}
}