leetcode 2492. Minimum Score of a Path Between Two Cities(两个城市间路径的最小score)

文章讲述了如何在无向图中,通过广度优先搜索(BFS)策略寻找从城市1到城市n的路径中,最短的单个road的长度,而不是最短路径。过程中需要记录每个经过的road的最小distance,即使遇到死胡同也能折回,避免使用visited数组导致无法返回。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
定义roads数组,每个元素长度为3,具体为[from, to, 该条road的distance],
其中road是双向的(也就是无向图),可以走多次(走不通可以折回来),
需要找的是城市1到城市n的路径中,每个路径由多个road组成,求最短的那个road的长度。
注意不是求最短路径,而是求路径中最短的那个road.

思路:

统一下说法:路径是由多个road组成,road就是数组中每个[from, to, 该条road的distance]。

由于要求城市1到n的最短road,
首先需要有一条从1到n的路径,这就需要建立无向图,然后BFS走过去。

因为不需要求最短路径,只需要把沿途road distance的最小值记录下来。
那么就在遍历中不断记录最小distance即可。

比较迷惑人的是每个road是可以多次往返的,那是不是不需要用visited记录已经走过的点了?
那不能,因为这是无向图,不记录visited就会陷入无限循环。
那如果像Example2那样,城市1走到城市2然后发现走不通要折回来,但是1已经被访问过了,岂不是就折不回来了么。

注意你不需要真的折回来,1走到2的时候你只需要记下最小distance,
还是Example2, 从1出发,
BFS的queue里有1-2的road, 还有1-3的road,1-2走不通就记下distance最小值就不走了,下一步直接走1-3。
再次提醒不是求最短路径,只需要记录沿途出现的road distance的最小值。
需要做的就是遍历所有可能的road,记录下最小distance.

也可以这样理解,只需要从1出发,记录每条走过的road的最小distance即可。
因为题目中说1肯定能到达n,就算中间走到无法到达的点,也能折回,并不计算总路径。

class Solution {
    public int minScore(int n, int[][] roads) {
        List<Node>[] graph = new ArrayList[n+1];
        Queue<Node> queue = new LinkedList<>();
        int minDis = Integer.MAX_VALUE;
        boolean[] visited = new boolean[n+1];

        for(int i = 0; i <= n; i++) graph[i] = new ArrayList<Node>();
        //建立无向图
        for(int[] road :roads) {
            graph[road[0]].add(new Node(road[1], road[2]));
            graph[road[1]].add(new Node(road[0], road[2]));
        }

        queue.offer(new Node(1, Integer.MAX_VALUE));

        while(!queue.isEmpty()) {
            Node cur = queue.poll();
            //这一步一定要放在判断visited前面,每一步都要记录下最小distance
            minDis = Math.min(minDis, cur.dis);
           
            if(visited[cur.dest]) continue;
            
            for(Node nextNode : graph[cur.dest])  queue.offer(nextNode);
            visited[cur.dest] = true;
        }
        return minDis;
    }
}

class Node{
    int dest;
    int dis;
    public Node(int dest, int dis) {
        this.dest = dest;
        this.dis = dis;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值