面试官提问:BERT 和 GPT 有什么区别?
面试者回答:
BERT(Bidirectional Encoder Representations from Transformers)和 GPT(Generative Pretrained Transformer)是两种基于 Transformer 的语言模型,但它们在架构设计、训练目标、应用场景等方面有显著区别。
1. 架构方向:双向 vs 单向
-
BERT:双向编码器
BERT 使用的是 Transformer 的 Encoder 架构,且是 双向(bidirectional) 的。具体来说,BERT 的双向特性意味着它可以同时从左到右和从右到左理解句子中的上下文信息。因此,它在处理句子时,能够基于一个词的两侧上下文来建模,从而获得更加精确的语义表示。这让 BERT 在许多自然语言理解任务(如问答、文本分类等)中表现非常出色。 -
GPT:单向解码器
GPT 使用的是 Transformer 的 Decoder 架构,且是 单向(unidirectional) 的。GPT 通过从左到右逐词预测的方式生成文本,即它只能利用已经生成的词的前向上下文进行预测。因此,GPT 的设计使其更适合于生成任务,如文本生成、语言建模等。
2. 预训练任务:遮蔽语言模型 vs 自回归语言模型
-
BERT:遮蔽语言模型(Masked Language Model, MLM)
BERT 的训练目标是遮蔽语言模型(MLM),即在输入中随机遮蔽一部分词语,然后让模型去预测被遮蔽的词汇。这个双向的预测过程促使模型理解每个词的双向上下文信息。这种方法主要用于自然语言理解任务。 -
GPT:自回归语言模型(Autoregressive Language Model, ARLM)
GPT 的训练任务是自回归语言模型(ARLM),即基于前面的词逐词预测下一个词。它的单向预测方式使得 GPT 更适合语言生成任务。这种自回归结构使 GPT 在生成连贯、长篇文本上具有显著优势。
3. 适用任务:理解 vs 生成
-
BERT:自然语言理解(Natural Language Understanding, NLU)
BERT 的双向上下文建模使其非常适合自然语言理解任务,例如:- 文本分类
- 命名实体识别(NER)
- 问答任务(QA)
- 自然语言推理(NLI)
BERT 通常需要通过微调(fine-tuning)来适应特定的下游任务。
-
GPT:自然语言生成(Natural Language Generation, NLG)
GPT 的单向特性和自回归训练方式让它在文本生成任务中表现优异,如:- 对话生成
- 机器翻译
- 故事生成
- 续写文本
GPT 可以在无需微调的情况下通过前向生成进行推理。
4. 训练数据与规模
-
BERT:大规模预训练,任务多样
BERT 在其预训练过程中使用了大量的多种形式的自然语言文本,主要任务是通过 MLM 和下一句预测(Next Sentence Prediction, NSP)进行训练。BERT 通过微调适应各种自然语言理解任务,其预训练数据涵盖了不同语域的广泛语料。 -
GPT:专注于语言生成
GPT 主要专注于语言生成任务,它的预训练目标是基于单向语言建模(自回归)。它的预训练数据是大规模的互联网文本,主要集中在自然语言生成的丰富语料上。
5. 微调与下游任务的适应性
-
BERT:微调适应性强
BERT 的架构适合多种下游自然语言处理任务,通过添加任务特定的分类头或回归头,可以微调它用于特定的任务。它的双向结构使其在诸如文本分类、情感分析、问答系统等任务上表现卓越。 -
GPT:生成能力突出
GPT 在生成任务中表现特别出色,特别是通过无监督的方式生成连贯的文本段落。它的预训练模型可以通过少量提示(prompt)生成丰富的语义内容。对于生成型任务,如对话、文本生成,GPT 无需大规模的微调,直接通过上下文进行推理。
总结
- BERT:侧重于自然语言理解,双向编码器架构,使用 MLM 任务训练,适合分类、问答等理解类任务。
- GPT:侧重于自然语言生成,单向解码器架构,使用自回归语言模型训练,擅长对话生成、文本生成等生成类任务。