简介:
一种面向多场景多任务优化的自动稀疏专家选择方法,它通过简洁有效的架构,实现了样本级细颗粒度的自动网络结构学习,对各种场景结构有较强的普适性。论文已被 SIGIR2022 录用,同时已经在支付宝数金搜索场景上进行了全流量推全,获得了显著的业务效果。
业务背景和问题:
由于业务种类与目标的丰富性,数金搜索较一般的垂类搜索面临更多的挑战。在单场景上进行分别迭代,带来了巨大的维护成本;同时,各个场景都比较重要但又有较大差异。主搜流量大,用户新,但成交相对稀疏。理财 TAB (指垂搜),流量较小,但成交金额是主搜的 3.96 倍,且用户多为资深用户。有部分用户会同时使用主搜和垂搜,如果用户行为信号不能实现迁移,也较难得到满意的线上效果。因此,在多个场景使用统一模型是十分必要且急迫的。
但是,将所有线上样本进行混合,直接使用 hard embedding sharing 的网络结构带来了比较严重的负迁移问题。经过近一年来从 MMOE, PLE 等方法的应用和研究,并调研了 STAR 等多场景方法, 我们提出了一种新颖的,基于自动专家选择的多场景多任务搜索框架(Automatic Expert Selection for Multi-Scenario and Multi-Task Search 下文简称 AESM)。
AESM 用一个框架,并以相同的视角同时解决多场景和多任务问题,它通过简洁有效的架构,实现样本级细颗粒度的网络结构学习,如下图所示。值得注意,该方法不仅可应用于搜索,还能应用到其他多场景多任务的算法场景。
将 AESM 模型部署在数金搜索的四个子场景中,相对于各个各场景中单独部署的模型取得了显著提升。相对于基线模型,CTR 整体提升 0.10%、 CTCVR 提升 2.51%,成交 GMV 提升 7.21%。详细的数据分析可见后续章节。
参考资料:
SIGIR 2022 | 多场景多任务优化在支付宝数字金融搜索的应用:https://cloud.tencent.com/developer/article/2050720
CIKM 2021 | 多场景下的星型CTR预估模型STAR:https://blog.csdn.net/alimama_Tech/article/details/121528920