Logistic回归原理浅谈

原文参考http://blog.csdn.net/ariessurfer/article/details/41310525
Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是否患有某种病。
在讲解Logistic回归理论之前,我们先从LR分类器说起。LR分类器,即Logistic Regression Classifier。在分类情形下,经过学习后的LR分类器是一组权值这里写图片描述,当测试样本的数据输入时,这组权值与测试数据按照线性加和得到
这里写图片描述
这里这里写图片描述是每个样本的n个特征。
解出x之后,按照sigmoid函数的形式求出这里写图片描述
sigmoid函数的图像如图所示这里写图片描述
sigmoid函数的定义域为

逻辑回归是一个经典的分类算法,它可以处理二元分类以及多元分类。逻辑回归的原理是由线性回归模型演变而来的,因此含有“回归”二字,但它并不是一个回归算法,而是属于广义线性模型的一类。[2] 逻辑回归的基本原理可以概括为以下几个步骤: 1. 寻找预测函数:逻辑回归模型通过定义一个预测函数来预测观测样本的分类概率。常用的预测函数是sigmoid函数,也称为逻辑函数。这个函数将输入值映射到一个介于0和1之间的概率值。 2. 构造损失函数:为了使模型能够学习到最优的参数,需要定义一个损失函数来衡量预测值与真实值的差距。常用的损失函数是交叉熵损失函数,它可以度量模型的预测与实际分类之间的误差。 3. 损失函数的优化方法:为了最小化损失函数,常用的优化方法是梯度下降法。梯度下降法通过迭代更新模型参数,使得损失函数逐渐减小,从而达到寻找最优参数的目的。 逻辑回归的优点包括:实现简单,计算效率高,模型可解释性强,可以处理线性可分问题,并且可以通过调整阈值来控制分类的准确率与召回率的平衡。缺点包括:对于非线性可分问题表现较差,并且对异常值敏感。 逻辑回归与线性回归的区别在于目标变量的类型不同。线性回归用于预测连续型变量,而逻辑回归用于预测分类变量。此外,逻辑回归使用了sigmoid函数来模拟分类概率,而线性回归没有这个步骤。 以上是关于逻辑回归原理的一些简要介绍。如果需要更加详细的内容,可以参考引用的材料进行进一步学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值