最小二乘法曲线拟合原理与实现

参考文章http://blog.csdn.net/jairuschan/article/details/7517773

最小二乘学习法是对模型的输出这里写图片描述和训练集输出这里写图片描述的平方误差这里写图片描述为最小时的参数这里写图片描述进行学习,式中之所以加上系数1/2,是为了约去对这里写图片描述进行微分时得到的2。

这里写图片描述

“LS”是Least Squares的首字母。平方误差这里写图片描述是残差这里写图片描述这里写图片描述范数,因此最小二乘学习法有时也称为这里写图片描述损失最小化学习法。
如果使用线性模型
这里写图片描述的话,训练样本的平方差这里写图片描述就能够表示为如下形式。这里写图片描述

在这里,这里写图片描述是训练输出的n维向量,这里写图片描述是下式中定义的n*b阶矩阵,也称为设计矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值