Transformer发展历程


版权声明

  • 本文原创作者:谷哥的小弟
  • 作者博客地址:http://blog.csdn.net/lfdfhl

在这里插入图片描述

1. Transformer模型概述

1.1 定义与核心特点

Transformer模型是一种先进的神经网络架构,它在处理序列数据时不依赖于传统的循环神经网络(RNN)结构,而是采用基于注意力机制的全新编码器-解码器(Encoder-Decoder)架构。这种架构的核心在于其能够并行处理序列中的所有元素,从而显著提高了计算效率。

  • 自注意力机制(Self-Attention):Transformer模型的核心是自注意力机制,它允许模型在处理序列中的每个元素时,同时考虑序列中的其他所有元素。这种机制使得模型能够捕捉序列内部的长距离依赖关系,这对于理解语言的复杂结构至关重要。

  • 多头注意力(Multi-Head Attention):Transformer模型中的自注意力机制被扩展为多头注意力,这意味着模型可以同时从不同的表示子空间中学习信息,增强了模型对不同类型信息的捕捉能力。

  • 位置编码(Positional Encoding):由于Transfor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谷哥的小弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值