版权声明
- 本文原创作者:谷哥的小弟
- 作者博客地址:http://blog.csdn.net/lfdfhl
1. Transformer模型概述
1.1 定义与核心特点
Transformer模型是一种先进的神经网络架构,它在处理序列数据时不依赖于传统的循环神经网络(RNN)结构,而是采用基于注意力机制的全新编码器-解码器(Encoder-Decoder)架构。这种架构的核心在于其能够并行处理序列中的所有元素,从而显著提高了计算效率。
-
自注意力机制(Self-Attention):Transformer模型的核心是自注意力机制,它允许模型在处理序列中的每个元素时,同时考虑序列中的其他所有元素。这种机制使得模型能够捕捉序列内部的长距离依赖关系,这对于理解语言的复杂结构至关重要。
-
多头注意力(Multi-Head Attention):Transformer模型中的自注意力机制被扩展为多头注意力,这意味着模型可以同时从不同的表示子空间中学习信息,增强了模型对不同类型信息的捕捉能力。
-
位置编码(Positional Encoding):由于Transfor