均方根误差(RMSE)、平均绝对误差(MAE)、标准差

RMSE

  1. Root Mean Square Error,均方根误差
  2. 是观测值与真值偏差的平方和与观测次数m比值的平方根。
  3. 是用来衡量观测值同真值之间的偏差

MAE

  1. Mean Absolute Error ,平均绝对误差
  2. 是绝对误差的平均值
  3. 能更好地反映预测值误差的实际情况.

标准差

  1. Standard Deviation ,标准差
  2. 是方差的算数平方根
  3. 是用来衡量一组数自身的离散程度
    在这里插入图片描述

RMSE与标准差对比:

标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。

RMSE与MAE对比:

RMSE相当于L2范数,MAE相当于L1范数。次数越高,计算结果就越与较大的值有关,而忽略较小的值,所以这就是为什么RMSE针对异常值更敏感的原因(即有一个预测值与真实值相差很大,那么RMSE就会很大)。

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页