平均绝对值误差

平均绝对值误差(MAE)是衡量预测模型精度的指标,它计算的是预测值与真实值之差的绝对值的平均数。由于MAE关注实际误差大小而非误差平方,故在异常检测等场景下可能比均方误差更适用。优化MAE通常涉及使用梯度下降等算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平均绝对值误差(Mean Absolute Error,MAE)是用来评估预测模型准确度的一个指标,它是预测值和真实值之间差的绝对值的平均数。

假设有n个样本,真实值分别为y₁, y₂, ……, yₙ,预测值分别为ŷ₁, ŷ₂, ……, ŷₙ。

首先,我们可以定义误差(error)为预测值与真实值之间的差:

eᵢ = yᵢ - ŷᵢ

则第i个样本的误差绝对值为:

|eᵢ| = |yᵢ - ŷᵢ|

我们希望得到所有样本误差绝对值的平均数,即平均绝对值误差。因此,我们可以计算所有样本误差绝对值的和,再除以样本数n:

MAE = (1/n) * Σ|yᵢ - ŷᵢ| (i=1,2,…,n)

由于绝对值函数的导数不连续,无法直接使用求导等方法求得最小化MAE的预测值,因此,通常采用梯度下降等优化算法来求解。

和均方误差不同,平均绝对值误差更加关注预测误差的实际大小,而不是误差平方的大小。在某些应用场景中,例如异常检测等,平均绝对值误差可能比均方误差更加合适。

首先,我们假设你已经安装了必要的Python库,如pandas、numpy和sklearn。让我们按照步骤来完成这个任务: 1. **加载数据集**: 使用`pandas`库中的`read_csv`函数从CSV文件中加载Boston房价数据集,它通常可以从`sklearn.datasets`模块获取。示例如下: ```python from sklearn.datasets import load_boston boston = load_boston() df = pd.DataFrame(boston.data, columns=boston.feature_names) target = boston.target ``` 2. **数据预处理**: 将特征数据(df)和目标变量(target)分开,并将数据划分为训练集和测试集,比如70%训练,30%测试,可以使用`train_test_split`函数: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(df, target, test_size=0.3, random_state=42) ``` 3. **选择回归模型**: 这里我们可以选择线性回归(LinearRegression),随机森林(RandomForestRegressor)或其他你熟悉的模型。例如,用线性回归作为例子: ```python from sklearn.linear_model import LinearRegression model = LinearRegression() ``` 4. **拟合模型**: 用训练数据拟合模型: ```python model.fit(X_train, y_train) ``` 5. **预测并评估**: 预测测试集数据,并计算平均绝对误差(MAE)和均方误差(MSE): ```python from sklearn.metrics import mean_absolute_error, mean_squared_error y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) print(f"Mean Absolute Error: {mae}") print(f"Mean Squared Error: {mse}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值