【魔训】数学表达式: 从恐惧到单挑系列作业第1-2天

首先给出闵老师的课程链接:https://blog.csdn.net/minfanphd/category_11236630.html


第一天(7月26日,对应老师1-3节)

1.6  描述你在学习、使用数学表达式时的困难, 可举例说明.

答:1)表达矩阵,向量,集合的时候,会使用混乱,且运用方式不专业;

        2)数学符号的常用含义不明确,混乱使用不专业。 

2.6  1)令 \mathbf{A} = \{3, 5\}, 写出 2^{\mathbf{A}}
       2)展开 2^{\emptyset}
       3)令 \mathbf{A} = \{5, 6, 7, 8, 9\}, 写出\mathbf{A}的其它两种表示法。

答: 1)2^{\mathbf{A}}=\{\emptyset,\{3\},\{5\},\{3,5\}\}

         2) 2^{\emptyset} = \{\emptyset\}

         3) \mathbf{A} = \{5, 6,\dots, 9\}\{x\}_{x=5}^9

3.3 自己出数据, 做一个 3 \times 2与  2 \times 4 的矩阵乘法.

 答:\mathbf{A}=\begin{bmatrix} 1& 5 \\ 2&4 \\ 3&3 \end{bmatrix}\mathbf{B}=\begin{bmatrix} 2 & 7&3 & 6\\ 1&4 &5 & 9 \end{bmatrix},
        \mathbf{A} \times \mathbf{B} = \begin{bmatrix} 7 & 27& 28 &49 \\ 8& 30 &26 & 51\\ 9& 33&24 &45 \end{bmatrix}

附:找出Deep Multi-View 符号系统的矛盾 

答:1)3.1中第2行 x_i^{(m)}表示向量,应该用黑体;

       2)3.1中第3行 “m-th”中的m应该和第2行中表述一致 ;

       3)3.1中第5行B是一个矩阵,但是采用了集合的{}表示方式;

       4)3.1中第5行中b_i是一个向量,应该用黑体;

       5)3.1中第1行对象有N+1个,而第5行中和对象对应的b_i数量只有N个,可能有问题。

第二天(7月27日,对应老师4-7节)

4.6  1)令 \mathbf{A} = \{1, 2, 5, 8, 9\}, 写出 \mathbf{A}上的 “模 2 同余” 关系及相应的划分.
       2)\mathbf{A} = \{1, 2, 5, 8, 9\}, 自己给定两个关系\mathbf{R}_1\mathbf{R}_2, 并计算 \mathbf{R}_1 \mathbf{R}_2, \mathbf{R}_1^+, \mathbf{R}_1^*.
       3)查阅粗糙集上下近似的定义并大致描述.

 答:1)\mathbf{B} = \{(a,b) \in \mathbf{A} \times \mathbf{A}) \vert a\mod 2 = b \mod 2\} \\ =\{(1,5),(1,9),(5,9),(2,8),(5,1),(9,1),(9,5),(8,2)\}

      修改:需追加(1,1),(2,2)...等 

        2) \mathbf{R_1} =\{(1,2),(8,5)\},\mathbf{R_2} =\{(2,5),(2,8),(5,9)\}

            \mathbf{R_1}\mathbf{R_2} =\{(1,5),(1,8),(8,9)\}

            \mathbf{R}_1^+ = \{(1,2),(8,5)\}

             \mathbf{R}_1^* = \{(1,2),(8,5)\}

       3) 上近似:包含给定集合\mathbf X的元素的最小可定义集。
           下近似:包含于集合\mathbf X的最大可定义集。

5.5 举例说明你对函数的认识. 

   答:函数主要描述集合间的映射关系,而这种映射关系一般分为一对一,一对多,多对一,多对多。需要注意的是函数不能用于描述上述4种关系的任何一种,只有一对一,多对一才可以用函数来描述。

6.5 自己给定一个矩阵并计算其各种范数. 

 答:\mathbf{A} = \begin{bmatrix} 4 &-2 \\ 0& 1 \end{bmatrix}

        \|\mathbf{A}\|_0=3

        \|\mathbf{A}\|_1=4+2+1=7

        \|\mathbf{A}\|_2=4^2+2^2+1=21

修改:2范数需开根号 

        \|\mathbf{A}\|_\infty=4

7.3 解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标:
\min \sum_{(i, j) \in \Omega} (f(\mathbf{x}_i, \mathbf{t}_j) - r_{ij})^2

答:对任意i和j的组合,找出f(\mathbf{x}_i, \mathbf{t}_j)r_{ij}差值平方的和的最小值。

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值