首先给出闵老师的课程链接:https://blog.csdn.net/minfanphd/category_11236630.html
第一天(7月26日,对应老师1-3节)
1.6 描述你在学习、使用数学表达式时的困难, 可举例说明.
答:1)表达矩阵,向量,集合的时候,会使用混乱,且运用方式不专业;
2)数学符号的常用含义不明确,混乱使用不专业。
2.6 1)令 , 写出 ;
2)展开 ;
3)令 , 写出的其它两种表示法。
答: 1)
2)
3) 或
3.3 自己出数据, 做一个 与 的矩阵乘法.
答:, ,
附:找出Deep Multi-View 符号系统的矛盾
答:1)3.1中第2行 表示向量,应该用黑体;
2)3.1中第3行 “m-th”中的m应该和第2行中表述一致 ;
3)3.1中第5行B是一个矩阵,但是采用了集合的{}表示方式;
4)3.1中第5行中是一个向量,应该用黑体;
5)3.1中第1行对象有N+1个,而第5行中和对象对应的数量只有N个,可能有问题。
第二天(7月27日,对应老师4-7节)
4.6 1)令 , 写出 上的 “模 2 同余” 关系及相应的划分.
2), 自己给定两个关系和 , 并计算 , , .
3)查阅粗糙集上下近似的定义并大致描述.
答:1)
修改:需追加(1,1),(2,2)...等
2) ,
3) 上近似:包含给定集合的元素的最小可定义集。
下近似:包含于集合的最大可定义集。
5.5 举例说明你对函数的认识.
答:函数主要描述集合间的映射关系,而这种映射关系一般分为一对一,一对多,多对一,多对多。需要注意的是函数不能用于描述上述4种关系的任何一种,只有一对一,多对一才可以用函数来描述。
6.5 自己给定一个矩阵并计算其各种范数.
答:
修改:2范数需开根号
7.3 解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标:
答:对任意i和j的组合,找出和差值平方的和的最小值。