ADMM之1范数理解

1. 问题

论文 [ADMM]Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers 中第6.1节的公式式怎么的出来的?
在这里插入图片描述

2. 分析 X X X

x k + 1 = arg ⁡ min ⁡ x k ρ 2 ∥ A x − z − b ∥ 2 2 + ⟨ λ , A x − z − b ⟩ = arg ⁡ min ⁡ x k ρ 2 ∥ A x − z − b + 1 ρ λ ∥ 2 2 = arg ⁡ min ⁡ x k ρ 2 ∥ A x − z − b + u ∥ 2 2 x^{k+1}=\arg \min_{x^k} \frac{\rho}{2} \|Ax-z-b\|_2^2+\langle \lambda, Ax-z-b \rangle \\ = \arg \min_{x^k} \frac{\rho}{2} \|Ax-z-b+\frac{1}{\rho} \lambda\|_2^2 \\ = \arg \min_{x^k} \frac{\rho}{2} \|Ax-z-b+u\|_2^2 \\ xk+1=argxkmin2ρAxzb22+λ,Axzb=argxkmin2ρAxzb+ρ1λ22=argxkmin2ρAxzb+u22
这一步是因为令 u = λ ρ u=\frac{\lambda}{\rho} u=ρλ,从而改变了第三式的迭代表达(用 λ \lambda λ的时候,其迭代式是有系数 ρ \rho ρ的)

f ( x ) = ∥ A x − z − b + u ∥ F 2 , S = A x − z − b + u f(x)=\|Ax-z-b+u\|_F^2, S=Ax-z-b+u f(x)=Axzb+uF2,S=Axzb+u
∂ f ∂ S = 2 S = 2 ( A x − z − b + u ) \frac{\partial{f}}{\partial{S}}=2S=2(Ax-z-b+u) Sf=2S=2(Axzb+u)

d f = t r [ ( ∂ f ∂ S ) T d S ] = t r [ ( ∂ f ∂ S ) T d ( A x − z − b + u ) ] = t r [ ( ∂ f ∂ S ) T ( A d x ) ] = t r [ ( A T ∂ f ∂ S ) T d x ] df=tr[(\frac{\partial{f}}{\partial{S}})^TdS]=tr[(\frac{\partial{f}}{\partial{S}})^Td(Ax-z-b+u)] \\ =tr[(\frac{\partial{f}}{\partial{S}})^T(Adx) ] \\ =tr[(A^T\frac{\partial{f}}{\partial{S}})^Tdx ] \\ df=tr[(Sf)TdS]=tr[(Sf)Td(Axzb+u)]=tr[(Sf)T(Adx)]=tr[(ATSf)Tdx]
所以:
∂ f ∂ x = A T ∂ f ∂ S = A T [ 2 ( A x − z − b + u ) ] = 2 A T ( A x − z − b + u ) \frac{\partial{f}}{\partial{x}}=A^T\frac{\partial{f}}{\partial{S}} =A^T[2(Ax-z-b+u)] \\ =2A^T(Ax-z-b+u) xf=ATSf=AT[2(Axzb+u)]=2AT(Axzb+u)
令上式为0,则
A T A x = A T ( z + b − u ) x = ( A T A ) − 1 A T ( z + b − u ) A^TAx=A^T(z+b-u) \\ x=(A^TA)^{-1}A^T(z+b-u) ATAx=AT(z+bu)x=(ATA)1AT(z+bu)
结论得证。

对 于 X 的 迭 代 , 其 主 要 是 让 偏 导 为 0 而 计 算 得 出 的 。 \textcolor{red}{对于X的迭代,其主要是让偏导为0而计算得出的。} X0

3. 分析 Z Z Z

z k + 1 = arg ⁡ min ⁡ z k ∥ z ∥ 1 + ρ 2 ∥ A x − z − b ∥ 2 2 + ⟨ λ , A x − z − b ⟩ = arg ⁡ min ⁡ x k ∥ z ∥ 1 + ρ 2 ∥ A x − z − b + u ∥ 2 2 z^{k+1}=\arg \min_{z^k} \|z\|_1+\frac{\rho}{2} \|Ax-z-b\|_2^2+\langle \lambda, Ax-z-b \rangle \\ = \arg \min_{x^k} \|z\|_1 + \frac{\rho}{2} \|Ax-z-b+u\|_2^2 \\ zk+1=argzkminz1+2ρAxzb22+λ,Axzb=argxkminz1+2ρAxzb+u22

其属于1范数+F范数求极小的范畴,直接写出答案:
z = S 1 ρ ( A x − b + u ) z=S_{\frac{1}{\rho}}(Ax-b+u) z=Sρ1(Axb+u)
可参考 https://blog.csdn.net/lgl123ok/article/details/122458509。

4. 分析 u u u

注意的是,此处的 u = λ ρ u=\frac{\lambda}{\rho} u=ρλ,才有
u k + 1 = u k + A x − z − b u^{k+1}=u^k+Ax-z-b uk+1=uk+Axzb
否则应该是:
λ k + 1 = λ k + ρ ( A x − z − b ) \lambda^{k+1}=\lambda^k+\rho(Ax-z-b) λk+1=λk+ρ(Axzb)
其理论依据是原论文3.4-3.7式。


另外:https://zhuanlan.zhihu.com/p/86826985 对于ADMM有较详细的介绍,可供参考。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值