斐波那契数列通项公式的推导证明----举一反三

本文介绍了斐波那契数列的概念,并详细推导了其通项公式,通过举一反三的方法,展示了如何利用相似思路解决特定数列的通项公式问题。通过对斐波那契数列的深入理解,读者可以更好地掌握数列的递推关系和通项公式求解技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

斐波那契数列通项公式的推导证明----举一反三

1-前言

        2021年5月20号的那天,有对象的都忙着约会秀恩爱,而我这样的单身狗,只能自己学习沉淀自己,为梦想而奔波,仿佛是在向世界宣布,520与我无关。这不,那天我在写一篇关于时间复杂度的博客,其中递归的时候遇到了一个数列:1, 1, 3, 5, 9, 15, 25, 41, 67,我想着求出第n项的通项公式,于是当晚发了朋友圈向圈内的朋友么请教一下,521那天也连续发了3条,而且是有偿。
在这里插入图片描述

        但是大多数的人都只能得出这个结论:
f ( n + 2 ) = f ( n + 1 ) + f ( n ) + 1 , n ∈ N ∗ , n ≥ 3 f(n+2)=f(n+1)+f(n)+1,n\in{N^*},{n}\geq 3 f(n+2)=f(n+1)+f(n)+1nNn3
        也就是从从第3项开始,每一项都是前2项之和,再加上1,也许是大家那天都很忙,也许是大家都没有头绪证明,对此,我还是决定写篇博客,把这个通项公式求出来,分享到朋友圈,一个是记录自己的成长,一个是也让不会并且很感兴趣的人去了解,朋友圈本就是记录分享一些情绪,有趣,感人,美好与学术知识的圣地。

2-斐波那契

2-1-什么是斐波那契

        记得小学的时候数学课本上有过一个兔子的故事,简单来说就是一对小兔子(一公一母)一个月后长成一对大兔子,大兔子接下来下个月能生下一对小兔子(也是一公一母),第三个月原本的大兔子再生一对,同时那对小兔子长大了,第四个月……
把上面的故事里的每个月的(包括第一个月)兔子对数写下来便得到了一个数列:
1 , 1 , 2 , 3 , 5 , 8 , 13 , 21... 1,1,2,3,5,8,13,21... 1123581321...
        这其中的规律很明显:
a 1 = a 2 = 1 a_1=a_2=1 a1=a2=1 a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an
        这样的一个数列{an}就是著名的斐波那契数列。

        但问题在于这仅仅是它的递推公式,而且还有三个递推变量,怎么看都不爽。这时候就不禁让人想研究它的通项公式了。不急,一步一步来看它通项公式到底长什么样。

2-2-通项公式的证明

        要解决一道数列的题目,三个递推变量怎么看都不顺眼,第一想法看看能不能干掉一个变量。简而言之,就是把两个变量看作一个整体,看看有没有相邻变量之间的关系。

        首先是这个式子:

1式: a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an

        我们把它定为1式,试一试能不能把 a n + 1 a_{n+1} an+1 拆成两部分给等式两边构成一个形如这样的式子:

2式: a n + 2 + λ a n + 1 = υ ( a n + 1 + λ a n ) a_{n+2}+λa_{n+1}=\upsilon(a_{n+1}+λa_n) an+2+λan+1=υ(an+1+λan)

        这样 { a n + 1 + λ a n a_{n+1}+λa_n an+1+λan}这个数列就应该满足一种等比数列的性质,也就是公比为 υ \upsilon υ等比数列。其中每一项为:
a n + 1 + λ a n , 当 n = 1 时 , 首 项 为 a 2 + λ a 1 a_{n+1}+λa_n,当n=1时,首项为a_{2}+λa_1 an+1+λann=1a2+λa1
        由于 a 1 = a 2 = 1 a_1=a_2=1 a1=a2=1得到首项应为:

首 项 : ( 1 + λ ) 首项: (1+λ) (1+λ)

        我们把2式展开:
a n + 2 + λ a n + 1 = υ ( a n + 1 + λ a n ) a_{n+2}+λa_{n+1}=\upsilon(a_{n+1}+λa_n) an+2+λan+1=υ(an+1+λan)
        展开 a n + 2 + λ a n + 1 = υ a n + 1 + υ λ a n a_{n+2}+λa_{n+1}=\upsilon a_{n+1}+\upsilon λa_n an+2+λan+1=υan+1+υλan        合并同类项: a n + 2 = ( υ − λ ) a n + 1 + υ λ a n a_{n+2}=(\upsilon-λ)a_{n+1}+\upsilon λa_n an+2=(υλ)an+1+υλan
        与1式相比: a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an
        可知: { υ − λ = 1 υ λ = 1 \begin{cases} \upsilon-λ=1\\ \upsilon λ=1 \end{cases} { υλ=1υλ=1        得: υ = λ + 1 \upsilon=λ+1 υ=λ+1
        将 υ = λ + 1 \upsilon=λ+1 υ=λ+1带入2式,可得: a n + 2 + λ a n + 1 = ( λ + 1 ) ( a n + 1 + λ a n ) a_{n+2}+λa_{n+1}=(λ+1)(a_{n+1}+λa_n) an+2+λan+1=(λ+1)(an+1+λan)
        展开,合并同类项:

3式: a n + 2 = a n + 1 + ( λ 2 + λ ) a n a_{n+2}=a_{n+1}+(λ^2+λ)a_n an+2=an+1+(λ2+λ)an

        与1式相比: a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an
        可知: λ 2 + λ = 1 λ^2+λ=1 λ2+λ=1
        那么现在问题就是看看存不存在这个实数 λ,如果有再想办法把它解出来。 λ 2 + λ = 1 λ^2+λ=1 λ2+λ=1 λ 2 + λ + 1 4 = 5 4 λ^2+λ+\frac{1}{4}=\frac{5}{4} λ2+λ+41=45 ( λ + 1 2 ) 2 = 5 4 (λ+\frac{1}{2})^2=\frac{5}{4} (λ+21)2=45 { λ + 1 2 = 5 4 2 = 5 2 2 λ + 1 2 = − 5 4 2 = − 5 2 2 \begin{cases} λ+\frac{1}{2}=\sqrt[2]{\frac{5}{4}}=\frac{\sqrt[2]{5}}{2}\\ λ+\frac{1}{2}=-\sqrt[2]{\frac{5}{4}}=-\frac{\sqrt[2]{5}}{2} \end{cases} λ+21=245 =225 λ+21=245 =225         得出解: { λ 1 = 5 2 − 1 2 λ 2 = − 5 2 − 1 2

<think>嗯,用户现在问的是怎么学LeetCode。首先,我需要回想之前的对话历史。用户之前问的是当“奋斗”不再是唯一信仰,如何构建多元化的生存意义,而我的回答比较抽象,涉及哲学和技术层面的分析。现在用户转向了一个非常具体的问题,关于学习LeetCode的方法。这可能意味着用户当前的学习或职业需求,比如准备技术面试,特别是算法和数据结构方面。 接下来,我需要考虑用户可能的背景。用户可能是一个准备求职的学生,或者是希望提升编程能力的开发者。学习LeetCode常与求职准备密切相关,尤其是针对科技公司的技术面试。因此,用户的需求可能不仅仅是学习LeetCode本身,而是如何高效地过LeetCode准备面试,提升算法能力。 用户的问题虽然简短,但需要详细的策略和方法。我需要提供一个结构化的学习计划,涵盖从基础到高级的步骤,可能包括如何选择题目、如何分析问题、如何练习以及如何总结。此外,用户可能还需要一些资源推荐和学习技巧,比如时间管理、刷题顺序、以及如何利用社区资源等。 另外,用户可能有不同的学习阶段。有的可能是零基础,需要从数据结构和算法开始学起;有的可能有一定基础,但需要系统化地提升。因此,回答需要兼顾不同层次的学习者,给出分阶段的建议。 还要考虑到用户可能的痛点,比如题目太多无从下手,遇到难题无法解决,或者缺乏坚持的动力。因此,除了具体的学习步骤,可能还需要一些激励方法或工具推荐,比如刷题打卡群、笔记方法、复盘技巧等。 另外,结合之前的对话,用户对抽象概念感兴趣,可能更倾向于结构清晰、逻辑严谨的回答,同时喜欢一些类比或方法论,比如之前提到的生态位意识、时间维度等。因此,在回答中可能需要将学习LeetCode的方法论与系统化的框架结合起来,帮助用户建立全面的学习路径。 最后,需要确保回答的实用性和可操作性,避免过于理论化。需要具体到步骤、资源、技巧,以及如何应对常见问题,比如如何分析时间复杂度和空间复杂度,如何避免常见错误,如何模拟面试环境等。 总结一下,回答需要涵盖以下几个部分: 1. 基础准备:数据结构和算法的基础知识。 2. 分阶段学习:从简单到困难,分阶段练习。 3. 刷题技巧:如何有效刷题,包括分类练习、手写代码、复盘等。 4. 资源推荐:书籍、在线资源、刷题顺序。 5. 时间管理和心态调整:如何制定计划,保持动力。 6. 模拟面试和实战应用:将练习应用到实际面试中。 同时,可能需要提醒用户不要盲目追求数量,而应注重理解和举一反三,培养解决问题的思维方式。此外,结合之前的回答风格,可以使用一些类比或结构化的框架,比如“三步拆解法”、“模块化训练”等,帮助用户更好地理解和记忆学习策略。</think>学习 LeetCode 是一个系统性工程,需要结合**知识积累、思维训练和实战技巧**。以下是经过验证的实践框架,适用于不同基础的学习者: --- ### 一、筑基阶段:构建算法知识树 1. **数据结构与算法核心模块** - **优先级排序**:数组/链表 → 栈/队列 → 哈希表 → 二叉树 → 堆 → 图 - **重点突破**: - 二分查找(理解循环不变量) - 递归与分治(掌握树形分解思维) - 动态规划(从暴力递归到状态转移方程) *推荐资源:《算法导论》关键章节 +《代码随想录》配图解析* 2. **复杂度分析实操** - 用数学归纳法推导递归时间复杂度(如斐波那契数列的指数级复杂度) - 空间换时间案例:哈希表降低查询复杂度(O(n)→O(1)) --- ### 二、模块化训练:建立解题反射弧 1. **分类突破法**(建议按标签刷题) - **滑动窗口**:从「无重复字符的最长子串」体会窗口收缩条件 - **双指针**:过「盛最多水的容器」理解收敛策略 - **DFS/BFS**:用「岛屿数量」掌握遍历模板的变形 *每日专练习:同类型题目连续刷3-5道,形成肌肉记忆* 2. **三步拆解法** - **步骤化思考**: 1. 将问题转化为数学模型(如将字符串匹配抽象为状态机) 2. 识别算法范式(贪心/动态规划/回溯等) 3. 设计测试用例(边界值、特殊场景) - **案例**:解「接雨水」时,先画图分析柱状结构,再选择单调栈或双指针策略 --- ### 三、高效刷题策略 1. **结构化笔记法** ```markdown ## 题目:单词拆分(139) - 关键点:字典查询优化 → 哈希表预处理 - 易错点:dp[i]的定义是前i个字符可拆分 - 变式思考:如果要求具体拆分方案?→ 回溯+记忆化 ``` 2. **错题本管理** - 按错误类型分类: - 逻辑漏洞(如循环条件错误) - 知识盲区(如不了解拓扑排序应用场景) - 工程思维缺失(如未做输入校验导致越界) 3. **时间管理矩阵** | 熟练度 | 每日分配 | |---|---| | 新题型 | 2道(深度思考) | | 薄弱点 | 3道(专突破) | | 已掌握 | 1道(速度训练) | --- ### 四、突破瓶颈期的进阶技巧 1. **降维打击法** - 遇到困难题时: - 先写暴力解法(如全排列用回溯) - 逐步添加剪枝条件 - 对比最优解的时间/空间取舍 2. **模拟面试环境** - 使用白板工具手写代码(如Excalidraw) - 设置45分钟倒计时(含测试用例设计) - 录音回放检查表达逻辑 3. **思维可视化工具** - 绘制递归树(如斐波那契数列的重复计算节点) - 动态规划填表法(用颜色标注状态转移路径) --- ### 五、资源组合拳 1. **经典题库路径** - 新手路线:LeetCode热题HOT 100 →《剑指Offer》 - 进阶路线:每日一题(连续90天) → 周赛复盘 2. **辅助工具包** - 调试神器:Python Tutor可视化执行 - 复杂度计算:Big-O Cheat Sheet - 模式识别:LeetCode Patterns(Github仓库) --- ### 六、认知升级:从解题到工程思维 1. **现实映射训练** - 将算法问题还原到真实场景: - 「会议室安排」→ 实际日程调度系统设计 - 「最短路径」→ 物流配送路径优化 2. **开源目实战** - 在GitHub找算法密集型目(如数据库索引实现) - 对比理论解法与实际工程实现的差异 --- **关键提醒**:刷300题不如精刷100题。建议每周做一次「深度复盘」:选择5道旧题,尝试用不同解法重写(如将递归改迭代),并撰写对比分析报告。这种刻意练习比单纯追求数量更有效。当你能向非技术人员清晰解释KMP算法的设计思想时,说明真正掌握了算法本质。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深知她是一场梦

你打不打赏,我都会一直写博客

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值