斐波那契数列通项公式的推导证明----举一反三
1-前言
2021年5月20号的那天,有对象的都忙着约会秀恩爱,而我这样的单身狗,只能自己学习沉淀自己,为梦想而奔波,仿佛是在向世界宣布,520与我无关。这不,那天我在写一篇关于时间复杂度的博客,其中递归的时候遇到了一个数列:1, 1, 3, 5, 9, 15, 25, 41, 67,我想着求出第n项的通项公式,于是当晚发了朋友圈向圈内的朋友么请教一下,521那天也连续发了3条,而且是有偿。
但是大多数的人都只能得出这个结论:
f ( n + 2 ) = f ( n + 1 ) + f ( n ) + 1 , n ∈ N ∗ , n ≥ 3 f(n+2)=f(n+1)+f(n)+1,n\in{N^*},{n}\geq 3 f(n+2)=f(n+1)+f(n)+1,n∈N∗,n≥3
也就是从从第3项开始,每一项都是前2项之和,再加上1,也许是大家那天都很忙,也许是大家都没有头绪证明,对此,我还是决定写篇博客,把这个通项公式求出来,分享到朋友圈,一个是记录自己的成长,一个是也让不会并且很感兴趣的人去了解,朋友圈本就是记录分享一些情绪,有趣,感人,美好与学术知识的圣地。
2-斐波那契
2-1-什么是斐波那契
记得小学的时候数学课本上有过一个兔子的故事,简单来说就是一对小兔子(一公一母)一个月后长成一对大兔子,大兔子接下来下个月能生下一对小兔子(也是一公一母),第三个月原本的大兔子再生一对,同时那对小兔子长大了,第四个月……
把上面的故事里的每个月的(包括第一个月)兔子对数写下来便得到了一个数列:
1 , 1 , 2 , 3 , 5 , 8 , 13 , 21... 1,1,2,3,5,8,13,21... 1,1,2,3,5,8,13,21...
这其中的规律很明显:
a 1 = a 2 = 1 a_1=a_2=1 a1=a2=1 a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an
这样的一个数列{an}就是著名的斐波那契数列。
但问题在于这仅仅是它的递推公式,而且还有三个递推变量,怎么看都不爽。这时候就不禁让人想研究它的通项公式了。不急,一步一步来看它通项公式到底长什么样。
2-2-通项公式的证明
要解决一道数列的题目,三个递推变量怎么看都不顺眼,第一想法看看能不能干掉一个变量。简而言之,就是把两个变量看作一个整体,看看有没有相邻变量之间的关系。
首先是这个式子:
1式: a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an
我们把它定为1式,试一试能不能把 a n + 1 a_{n+1} an+1 拆成两部分给等式两边构成一个形如这样的式子:
2式: a n + 2 + λ a n + 1 = υ ( a n + 1 + λ a n ) a_{n+2}+λa_{n+1}=\upsilon(a_{n+1}+λa_n) an+2+λan+1=υ(an+1+λan)
这样 {
a n + 1 + λ a n a_{n+1}+λa_n an+1+λan}这个数列就应该满足一种等比数列的性质,也就是公比为 υ \upsilon υ等比数列。其中每一项为:
a n + 1 + λ a n , 当 n = 1 时 , 首 项 为 a 2 + λ a 1 a_{n+1}+λa_n,当n=1时,首项为a_{2}+λa_1 an+1+λan,当n=1时,首项为a2+λa1
由于 a 1 = a 2 = 1 a_1=a_2=1 a1=a2=1得到首项应为:
首 项 : ( 1 + λ ) 首项: (1+λ) 首项:(1+λ)
我们把2式展开:
a n + 2 + λ a n + 1 = υ ( a n + 1 + λ a n ) a_{n+2}+λa_{n+1}=\upsilon(a_{n+1}+λa_n) an+2+λan+1=υ(an+1+λan)
展开 a n + 2 + λ a n + 1 = υ a n + 1 + υ λ a n a_{n+2}+λa_{n+1}=\upsilon a_{n+1}+\upsilon λa_n an+2+λan+1=υan+1+υλan 合并同类项: a n + 2 = ( υ − λ ) a n + 1 + υ λ a n a_{n+2}=(\upsilon-λ)a_{n+1}+\upsilon λa_n an+2=(υ−λ)an+1+υλan
与1式相比: a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an
可知: { υ − λ = 1 υ λ = 1 \begin{cases} \upsilon-λ=1\\ \upsilon λ=1 \end{cases} {
υ−λ=1υλ=1 得: υ = λ + 1 \upsilon=λ+1 υ=λ+1
将 υ = λ + 1 \upsilon=λ+1 υ=λ+1带入2式,可得: a n + 2 + λ a n + 1 = ( λ + 1 ) ( a n + 1 + λ a n ) a_{n+2}+λa_{n+1}=(λ+1)(a_{n+1}+λa_n) an+2+λan+1=(λ+1)(an+1+λan)
展开,合并同类项:
3式: a n + 2 = a n + 1 + ( λ 2 + λ ) a n a_{n+2}=a_{n+1}+(λ^2+λ)a_n an+2=an+1+(λ2+λ)an
与1式相比: a n + 2 = a n + 1 + a n a_{n+2}=a_{n+1}+a_n an+2=an+1+an
可知: λ 2 + λ = 1 λ^2+λ=1 λ2+λ=1
那么现在问题就是看看存不存在这个实数 λ,如果有再想办法把它解出来。 λ 2 + λ = 1 λ^2+λ=1 λ2+λ=1 λ 2 + λ + 1 4 = 5 4 λ^2+λ+\frac{1}{4}=\frac{5}{4} λ2+λ+41=45 ( λ + 1 2 ) 2 = 5 4 (λ+\frac{1}{2})^2=\frac{5}{4} (λ+21)2=45 { λ + 1 2 = 5 4 2 = 5 2 2 λ + 1 2 = − 5 4 2 = − 5 2 2 \begin{cases} λ+\frac{1}{2}=\sqrt[2]{\frac{5}{4}}=\frac{\sqrt[2]{5}}{2}\\ λ+\frac{1}{2}=-\sqrt[2]{\frac{5}{4}}=-\frac{\sqrt[2]{5}}{2} \end{cases} ⎩⎨⎧λ+21=245=225λ+21=−245=−225 得出解: { λ 1 = 5 2 − 1 2 λ 2 = − 5 2 − 1 2