Generative Models for Visual Signals


Generative Models for Visual Signals – Assignment 
I. Introduction: 
 
This homework assignment is focused on providing a deep understanding of two advanced image processing 
models: Denoising Diffusion Probabilistic Models (DDPM) and Deep Image Prior (DIP). This document will 
elaborate on the core concepts, theoretical underpinnings, and practical examples to better grasp how these 
models operate and can be applied in real-world scenarios. 
1.1. Denoising Diffusion Probabilistic Models (DDPM) 
DDPMs are generative models that transform Gaussian noise into a complex data distribution through a process 
akin to reversing thermodynamic diffusion. This is achieved by a sequence of learnable reverse diffusion steps, 
each of which is conditioned on its predecessor. The models are trained to predict the noise added at each timestep, 
enabling the recovery of the original data from pure noise. For instance, one practical application is generating 
detailed and diverse human faces from randomized noise inputs. 
A simplified equation representing this process is: x_t = sqrt(alpha_t) * x_0 + sqrt(1-alpha_t) * epsilon, where 
epsilon is noise, and alpha_t represents the variance schedule over timesteps. 
1.2. Deep Image Prior (DIP) 
Deep Image Prior utilizes the inherent structure of convolutional neural networks (CNNs) to encode priors for 
natural images. By fitting a CNN with randomly initialized weights directly to a target image, DIP leverages the 
bias of CNNs towards natural image statistics without training on large datasets. This approach is particularly 
effective for tasks like image denoising, super-resolution, and inpainting, providing high-quality restorations 
based on the network's innate biases alone. 
The optimization process can be described as minimizing the difference between the CNN output and the target 
image, which typically leads to underfitting to noise and emphasizes significant image structures. 
 
II. Task: Technical Integration of DDPM and DIP 
 
For this assignment, you are tasked to explore and propose methods to integrate the principles of DDPM and DIP. 
Consider how the probabilistic modeling of DDPM can enhance the image-specific priors of DIP, or how the 
architectural bias of DIP can be used to initiate the reverse diffusion process in DDPM. Provide theoretical 
formulations and possible practical implementations. Here are two examples, and your solution could be one of 
them or a novel one. 
Example 1: Accelerating DDPM with DIP-based Initial Priors 
In this example, you are asked to explore the possibility of using Deep Image Prior (DIP) to provide a quick initial 
prior for the Denoising Diffusion Probabilistic Model (DDPM) training process. The motivation behind this 
approach is to address the slow backward learning process in DDPM by leveraging the image-specific prior 
automatically learned by the CNN architecture in DIP. To implement this idea, you can start by training a DIP model on the target image for a relatively short period. 
The goal is to capture the high-level structures and patterns present in the image without overfitting to the noise. 
The trained DIP model can then be used to generate an initial prior for the DDPM training process. 
Next, you should modify the DDPM training algorithm to incorporate the DIP-based initial prior. Instead of 
starting from pure noise, the DDPM model can be initialized with the output of the DIP model. This initialization 
can provide a more informative starting point, potentially reducing the number of diffusion steps required for the 
DDPM model to converge. 
You should experiment with different DIP training durations and architectures to find the optimal balance 
between capturing meaningful image priors and computational efficiency. They should also investigate the impact 
of the DIP-based initialization on the quality and diversity of the generated samples from the DDPM model. 
To evaluate the effectiveness of this approach, you can compare the convergence speed and sample quality of the 
DDPM model with and without the DIP-based initial prior. They should provide quantitative metrics, such as the 
number of diffusion steps required to reach a certain level of sample quality, as well as qualitative comparisons of 
the generated samples. Furthermore, you can explore variations of this idea, such as using DIP to provide 
intermediate priors at different stages of the DDPM training process. They can also investigate the potential of 
using DIP to guide the noise estimation and denoising steps in DDPM, leveraging the learned image prior to 
improve the accuracy of these steps. 
 
Example 2: Guiding DIP Early Stopping with DDPM-inspired Supervision 
In this example, you are challenged to develop a more principled approach to determine the optimal early 
stopping point in Deep Image Prior (DIP) training by incorporating supervision information inspired by the 
Denoising Diffusion Probabilistic Model (DDPM). 
The main idea is to introduce gradual denoising steps during the DIP training process, similar to the denoising 
steps in DDPM. By adding noise to the target image at different levels and using these noisy versions as 
intermediate targets, you can guide the DIP model to learn a hierarchical representation of the image. 
To implement this approach, you should modify the DIP training algorithm to include multiple denoising stages. 
At each stage, the target image is corrupted with noise of varying levels, creating a sequence of noisy images. The 
DIP model is then trained to reconstruct these noisy images in a progressive manner, starting from the most 
heavily corrupted image and gradually moving towards the clean target image. 
During training, you should monitor the reconstruction quality of the DIP model at each denoising stage. They 
can use metrics such as peak signal-to-noise ratio (PSNR) or structural similarity index (SSIM) to quantify the 
similarity between the reconstructed images and the corresponding noisy targets. By analyzing the improvement 
in reconstruction quality across the denoising stages, you can develop a criterion for determining the optimal 
stopping point for DIP training. 
You should experiment with different noise levels, denoising schedules, and DIP architectures to find the most 
effective configuration. They should also investigate the impact of this approach on the final reconstructed image 
quality and compare it with traditional early stopping methods used in DIP. 
Furthermore, you can explore additional techniques to enhance the denoising guidance in DIP training. For 
example, they can incorporate perceptual loss functions or adversarial training objectives to improve the 
perceptual quality of the reconstructed images. They can also investigate the use of learned denoising priors or 
conditional denoising models to guide the DIP training process. 
To evaluate the effectiveness of this approach, you should provide quantitative comparisons of the reconstruction 
quality and early stopping accuracy compared to baseline DIP methods. They should also present qualitative 
results showcasing the visual quality of the reconstructed images at different denoising stages and the final output. 
 
III. Evaluation Criteria 
 Theoretical Justification (30%): 
 Provide a clear and coherent explanation of the proposed solution, highlighting how it combines the 
strengths of DDPM and DIP. Justify the design choices and assumptions made in the proposed 
approach. Discuss the potential benefits and limitations of the proposed solution compared to using 
DDPM or DIP alone. 
 Experimental Verification (40%): 
 Implement the proposed solution and conduct experiments to validate its effectiveness. Compare the 
performance of the proposed approach with standalone DDPM and DIP methods in terms of either 
image quality, generation speed, or both. Provide quantitative metrics to support the claims, such as 
PSNR, SSIM, FID, or generation time. Present qualitative results showcasing the visual quality of the 
generated or reconstructed images. Analyze the experimental results and discuss the observed 
improvements or trade-offs compared to the baseline methods. 
 Ablation Studies and Analysis (30%): 
 Conduct ablation studies to investigate the impact of different components or hyperparameters in the 
proposed solution. Vary the key parameters, such as noise levels, denoising schedules, or architectures, 
and evaluate their influence on the performance. Provide insights and interpretations based on the 
ablation studies, justifying the chosen configurations. 
Note: The focus of this assignment is on demonstrating the effectiveness of combining DDPM and DIP 
techniques, rather than achieving state-of-the-art performance. The proposed solution should show improvements 
in either image quality, generation speed, or both, compared to using DDPM or DIP individually. The claims 
made in the solution should be supported by theoretical justifications and experimental verification. 
The evaluation criteria emphasize the importance of providing a clear theoretical justification for the proposed 
approach, conducting thorough experiments to validate its effectiveness, and presenting the work in a wellorganized
 and understandable manner. You are expected to provide quantitative and qualitative results, perform 
ablation studies to analyze the impact of different components, and discuss the observed improvements or tradeoffs
compared to the baseline methods. 
By meeting these evaluation criteria, you can demonstrate their understanding of the DDPM and DIP techniques, 
their ability to combine them effectively, and their skills in conducting rigorous experiments and analysis. 
 
IV. Submission Requirements 
 
4.1. GitHub Repository (50%): 
 
 Create a GitHub repository to host your implementation and related files. 
 Include well-documented and organized code for your proposed solution. 
 Provide clear instructions in the README.md file on how to run the code and reproduce the experiments. 
 Use appropriate git commit messages and branches to track the development progress. 
 Ensure that the repository is accessible to the instructor and teaching assistants.  
4.2. Report (50%): 
 
 Write a comprehensive report describing your proposed solution, experiments, and findings. 
 The report should be in a format of your choice (e.g., PDF, Markdown, LaTeX) and can be written in any 
preferred language. 
 
4.3. Submission Deadline: 
 
 The GitHub repository link and the report should be submitted via Moodle by 2024.6.11. 
 Late submissions will be subject to the course's late submission policy. 

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Structured relation discovery is the process of identifying and extracting relationships between entities in a given text corpus. This is a challenging task due to the complexity of natural language and the varied ways in which relationships can be expressed. Generative models offer a promising approach to structured relation discovery, as they can learn to generate realistic text that exhibits the desired relationships. Generative models are a type of machine learning model that can learn to create new examples of text by modeling the underlying probability distribution of the text. This can be achieved through various techniques, such as recurrent neural networks (RNNs), Markov chains, and probabilistic graphical models. These models are trained on a large corpus of text, and they learn to generate new text that is similar to the training data. To use generative models for structured relation discovery, we need to first define the relationships we are interested in. For example, we might want to identify relationships between people and organizations, or between products and their features. We can then train a generative model on a corpus of text that contains these relationships. The model will learn to generate text that exhibits the desired relationships, and we can use this to identify and extract relationships in new text. One popular approach to generative modeling for structured relation discovery is the use of conditional random fields (CRFs). CRFs are a type of probabilistic graphical model that can learn to predict the probability of a particular sequence of labels (i.e., the relationships between entities) given a sequence of observations (i.e., the text). By training a CRF on a corpus of text that contains the desired relationships, we can learn to predict the relationships in new text. Another approach to generative modeling for structured relation discovery is the use of RNNs. RNNs are a type of neural network that can learn to model the sequential nature of text. By training an RNN on a corpus of text that contains the desired relationships, we can learn to generate new text that exhibits the relationships. We can then use this generated text to identify and extract relationships in new text. In conclusion, generative models offer a promising approach to structured relation discovery, as they can learn to generate realistic text that exhibits the desired relationships. By training these models on a corpus of text that contains the relationships we are interested in, we can use them to identify and extract relationships in new text.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值