来源:知乎—JunMa
地址:https://zhuanlan.zhihu.com/p/569555913
没有意外,diffusion model的热浪也涌入了医学图像,这是今年MICCAI看到的几篇有意思的文章。
申明:由于笔者视野狭窄以及精力不足,一定错过了不少优秀的扩散模型相关的MICCAI文章,请大佬们评论区补充。文字内容是个人理解,请带着批评和质疑阅读,不要全信。
任务介绍:给定起始时间心脏MR图像和终止时间图像,设计一个模型,能连续的给出中间时间点的图像。
思路简介:用DDMP生成latent code (其实就是噪声),另一个网络基于latent code生成形变场,把source图像形变到target图像
inference阶段:
输入target image,生成latent code,然后对其缩放( )来模拟不同时间点的latent code;
latent code送到deformation module里生成形变场,对source图像S形变生成 中间时间点的图像。
随笔:
刚看这篇文章的时候挺困惑的,在inference阶段跟DDPM完全不一样,没有输入噪声也没做reverse process,DDPM在这个框架里只用来生成latent code,为啥不用更简单的VAE呢?可能这样设计的原因是DDPM的输出跟原图大小是一样的,方便生成形变场。作者说从有这个idea,到文章写完,她只画了两个月时间,圈里真是好卷
任务介绍:输入有病灶的图像,设计模型输出其对应的没有病灶的图像,两者相减即可生成异常区域的map
思路简介:在包含健康和带病变的图像上训练一个DDPM,同时训练一个分类器来区分带噪声的健康和病变图像(即DDPM前向过程中的中间结果)。
inference过程中输入带病变的图像,用训练好的分类器做引导,生成对应的无病灶图像。
Note: Reverse过程用的是DDIM做采样,不是默认的DDPM,有两个好吃:速度快+结果是确定的。
随笔:展示的例子病变都比较清晰,不知道对不清晰的病灶检测能力怎么样;如果输入一张正常的图像,用分类器引导它生成带病变的图像,比较好奇会在什么地方生成病灶,生成病灶的这些地方是不是常见的发病区域呢?
下面两篇文章都是用扩散模型做MR重建,但思路不一样,一个是在K-space做,另一个是主要在image-space做,用K-space信息做引导。
思路简介:整体流程是基于conditional DDPM,这也是在图像转换过程中最常用的模型。整个diffusion和reverse过程定义在K-space,而不是image space;condition是under-sampling mask (不是under-sample k-space)。reverse过程可以通过不同的噪声初始化得到多个采样结果,进而可以量化重建结果的uncertainty,比如pixel-variance。
作者提出已有工作存在两方面的不足:1)有监督学习的范式 只能处理一种情况下的下采样,不同的下采样需要训练不同的模型;2)确定性的建模过程,inference阶段模型只能给出一个结果,而不是所有可能结果的分布p(full MR|undersampling MR)
思路简介:先在全采样的MR图像上训练unconditional DDMP,然后用under-sampling k-space数据来引导模型生成对应的全采样图像,引导过程如下:1)给under-sampling k-space加高斯噪声;2)同时把基于训练的好的DDMP生成的图像变到k-space;3)通过公式(5)融合1)+2)逆变换到图像空间
这种思路的好处是一个训练的好的模型适用于不同的undersampling的情况,不用重新训练多个模型。
为了加速采样,作者提出了coarse-to-fine的策略
coarse:不跑完整的reverse过程,而是每隔50步采样一次
fine: 同时采样多个图像,最终求平均得到refine的结果
后记
个人比较喜欢后两个工作,把DDPM跟MR成像机理巧妙的结合在一起。diffusion model很适合做image-to-image translation的任务,相信接下来在medical image领域会有更多的成果出来。
机器学习顶会ICLR2021和2022都把outstanding paper之一授予了diffusion model相关的工作, ICLR 2023提交论文今天在open review放出来了,可以用diffusion model作为关键词搜索下相关文章,感受下其热度
https://openreview.net/group?id=ICLR.cc/2023/Conference
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
猜您喜欢:
深入浅出stable diffusion:AI作画技术背后的潜在扩散模型论文解读
戳我,查看GAN的系列专辑~!一顿午饭外卖,成为CV视觉的前沿弄潮儿!
最新最全100篇汇总!生成扩散模型Diffusion ModelsECCV2022 | 生成对抗网络GAN部分论文汇总
CVPR 2022 | 25+方向、最新50篇GAN论文
ICCV 2021 | 35个主题GAN论文汇总
超110篇!CVPR 2021最全GAN论文梳理
超100篇!CVPR 2020最全GAN论文梳理拆解组新的GAN:解耦表征MixNMatch
StarGAN第2版:多域多样性图像生成
附下载 | 《可解释的机器学习》中文版
附下载 |《TensorFlow 2.0 深度学习算法实战》
附下载 |《计算机视觉中的数学方法》分享
《基于深度学习的表面缺陷检测方法综述》
《零样本图像分类综述: 十年进展》
《基于深度神经网络的少样本学习综述》
《礼记·学记》有云:独学而无友,则孤陋而寡闻
欢迎加入 GAN/扩散模型 —交流微信群 !
扫描下面二维码,添加运营小妹好友,拉你进群。发送申请时,请备注,格式为:研究方向+地区+学校/公司+姓名。如 扩散模型+北京+北航+吴彦祖
请备注格式:研究方向+地区+学校/公司+姓名
点击 一顿午饭外卖,成为CV视觉的前沿弄潮儿!,领取优惠券,加入 AI生成创作与计算机视觉 知识星球!