CV前沿方向:Visual Prompting 视觉提示工程下的范式

prompt在视觉领域,也越来越重要,在图像生成,作为一种可控条件,增进交互和可控性,在多模态理解方面,指令prompt也使得任务灵活通用。视觉提示工程,已然成为CV一个前沿方向!

下面来看看最新的两篇论文,了解一下视觉提示的应用!


Visual Instruction Inversion: Image Editing via Visual Prompting

文本条件的图像编辑已经成为一种强大的图像编辑工具。

然而,在许多情况下,语言描述图像编辑具有歧义性和低效性。面对这些挑战时,视觉提示可以更直观和准确地传达所需的编辑内容。

本文提出了一种通过视觉提示进行图像编辑的方法。通过给定代表编辑的“之前”和“之后”图像的示例对,方法学习一个基于文本的编辑方向,用于在新图像上执行相同的编辑。利用文本到图像扩散模型的丰富预训练编辑能力,将视觉提示转化为编辑指令。

结果表明,即使只有一个示例对,也可以获得与最先进的文本条件图像编辑框架相竞争的结果。https://thaoshibe.github.io/visii/

065a03f5718e215b6c2c6af8dcd21e6f.png

A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models

Prompt engineering是一种技术,它通过增加大型预训练模型与针对特定任务的提示(即prompt)来适应新任务。提示可以手动创建为自然语言指令,也可以自动生成为自然语言指令或向量表示。

Prompt engineering使得仅依靠提示就可以进行预测,而无需更新模型参数,并且更容易将大型预训练模型应用于任务。

在过去的几年里,Prompt engineering在自然语言处理领域得到了广泛研究。然而,目前缺乏关于预训练视觉语言模型上Prompt engineering的系统综述。本文旨在对三种类型的视觉语言模型(包括多模态生成模型、图像-文本匹配模型和文本-图像生成模型)上的Prompt engineering的前沿研究进行全面的调查。对于每种模型,概述了模型简介、提示方法、基于提示的应用以及相关的责任和完整性问题。

此外,还讨论了视觉语言模型、语言模型和视觉模型上的Prompt engineering的共性和差异。总结了挑战、未来方向和研究机会,以促进未来关于这个方向研究。

1087ab1163aea59e2e4d130911c362cd.png

关注公众号【机器学习与AI生成创作】,更多精彩等你来读

卧剿,6万字!30个方向130篇!CVPR 2023 最全 AIGC 论文!一口气读完

深入浅出stable diffusion:AI作画技术背后的潜在扩散模型论文解读

深入浅出ControlNet,一种可控生成的AIGC绘画生成算法! 

经典GAN不得不读:StyleGAN

4e3e7c15d4a9b1576d005058ff4e1d73.png 戳我,查看GAN的系列专辑~!

一杯奶茶,成为AIGC+CV视觉的前沿弄潮儿!

最新最全100篇汇总!生成扩散模型Diffusion Models

ECCV2022 | 生成对抗网络GAN部分论文汇总

CVPR 2022 | 25+方向、最新50篇GAN论文

 ICCV 2021 | 35个主题GAN论文汇总

超110篇!CVPR 2021最全GAN论文梳理

超100篇!CVPR 2020最全GAN论文梳理

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

《礼记·学记》有云:独学而无友,则孤陋而寡闻

点击一杯奶茶,成为AIGC+CV视觉的前沿弄潮儿!,加入 AI生成创作与计算机视觉 知识星球!

### Visual Prompting in Machine Learning and Computer Vision Techniques Visual prompting refers to the process where a model receives additional visual information or context that guides its decision-making processes. This technique enhances how models interpret input data, particularly images, leading to more accurate predictions and classifications. In computer vision applications, visual prompts can take several forms including: - **Textual Prompts**: Providing textual descriptions alongside image inputs helps guide neural networks towards specific features they should focus on during analysis[^1]. - **Attention Maps**: Highlight areas within an image which are most relevant for making decisions. These maps allow models to concentrate processing power only on important sections rather than analyzing entire pictures uniformly. - **Object Masks**: By masking out irrelevant parts of images before feeding them into algorithms, performance improvements occur because less noise interferes with key elements necessary for correct identification tasks. Implementations often involve modifying existing architectures like Convolutional Neural Networks (CNNs) so these systems understand not just raw pixel values but also contextual clues provided through prompts. For instance, when detecting objects within scenes, applying appropriate masks ensures better recognition rates even under challenging conditions such as occlusions or varying lighting environments[^2]. Moreover, integrating mobile sensing technologies could further enhance visual prompting mechanisms by dynamically adjusting cues based on real-time environmental changes around devices used for capturing imagery[^3]. ```python import torch from torchvision import transforms, models def apply_visual_prompt(image_tensor, prompt_mask): """ Applies a binary mask over an input tensor representing an image. Args: image_tensor (torch.Tensor): Input image converted to PyTorch Tensor format. prompt_mask (torch.Tensor): Binary mask indicating regions of interest. Returns: torch.Tensor: Modified version of original image after applying mask. """ masked_image = image_tensor * prompt_mask.unsqueeze(0).expand_as(image_tensor) return masked_image ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值