​437. 路径总和 III​

该博客介绍了如何解决一个二叉树中节点值之和等于目标和的路径计数问题。代码中使用了递归方法,但时间复杂度达到了O(N^2),因为每个节点都可能作为路径起点,需要遍历其子树。为避免整数溢出,将中间变量和目标和类型改为long。此外,还提到了一个因数值过大导致的编译错误,并给出了解决方案。
摘要由CSDN通过智能技术生成

1、题目描述

2、题目分析

通过题目可以得到下来3个条件:

1、求路径数目:一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。

2、路径 不需要从根节点开始,也不需要在叶子节点结束

3、要求 路径方向必须是向下的(只能从父节点到子节点)

具体代码实现如下:

class Solution {
    int sumPath = 0;
    public int pathSum(TreeNode root, long targetSum) {
        if(root == null) return 0;
        sumValue(root,0,targetSum);

        //左右子树中任何节点都有成为出发点的可能,因此分别递归
        pathSum(root.left,targetSum);
        pathSum(root.right,targetSum);

        return sumPath;     
    }

    private void sumValue(TreeNode root, long sum, long targetSum){
        if(root == null) return ;
        
        sum += root.val;
        if(sum == targetSum){
             sumPath++;
        }
        //左右子树分别遍历
        sumValue(root.left, sum, targetSum);
        sumValue(root.right, sum, targetSum);
    }
}

复杂度分析

时间复杂度:O(N^2),其中 N为该二叉树节点的个数。对于每一个节点,求以该节点为起点的路径数目时,则需要遍历以该节点为根节点的子树的所有节点,因此求该路径所花费的最大时间为 O(N),我们会对每个节点都求一次以该节点为起点的路径数目,因此时间复杂度为O(N^2)

空间复杂度:O(N),考虑到递归需要在栈上开辟空间。

代码中需要注意的点:

1、 //左右子树中任何节点都有成为出发点的可能,因此分别递归
        pathSum(root.left,targetSum);
        pathSum(root.right,targetSum);

2、在编译时,倒数第二个case编译不过[1000000000,1000000000,null,294967296,null,1000000000,null,1000000000,null,1000000000]  0

       原因是数字范围超过int的范围,因此编译出错。

       修改完善条件,如上面代码所示,把【目标和】和中间步骤的【累积加】全部由int变成long型。 既 long sum, long targetSum。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值