第十三篇 惯性定位计算基础公式

1 反对称矩阵

V = [ 0 − v 3 v 2 v 3 0 − v 1 − v 2 v 1 0 ] V = \begin{bmatrix} 0 &-v3 &v2\\ v3 &0 &-v1\\ -v2 &v1 &0 \end{bmatrix} V= 0v3v2v30v1v2v10
反对称矩阵乘以向量等于向量叉乘
V ∗ b ⃗ = V ⃗ × b ⃗ V*\vec b = \vec V \times \vec b Vb =V ×b

2 罗德里格斯公式

D = I + s i n ( ϕ ) ∗ ( u ⃗ × ) + ( 1 − c o s ( ϕ ) ) ∗ ( u ⃗ × ) 2 D = c o s ( ϕ ) ∗ I + ( 1 − c o s ( ϕ ) ) ∗ u ⃗ ∗ u ⃗ T + s i n ( ϕ ) ∗ ( u ⃗ × ) D=I+sin(\phi)*(\vec u \times) + (1-cos(\phi))*(\vec u \times)^2\\ D=cos(\phi)*I+(1-cos(\phi))*\vec u*\vec u^T + sin(\phi)*(\vec u \times) D=I+sin(ϕ)(u ×)+(1cos(ϕ))(u ×)2D=cos(ϕ)I+(1cos(ϕ))u u T+sin(ϕ)(u ×)

3 姿态微分方程以及求解

3.1 方向余弦阵微分方程以及求解

微分方程
C ˙ b i = C b i ∗ ( ω i b b × ) \dot C_{b}^i=C_{b}^i*(\omega_{ib}^b \times) C˙bi=Cbi(ωibb×)
求解结果
C b ( m ) i = C b ( m − 1 ) i ∗ C b ( m ) b ( m − 1 ) C b ( m ) b ( m − 1 ) = I + s i n ( Δ θ m ) Δ θ m ( Δ θ ⃗ m × ) + 1 − c o s ( Δ θ m ) Δ θ m 2 ( Δ θ ⃗ m × ) 2 C_{b(m)}^i = C_{b(m-1)}^i * C_{b(m)}^{b(m-1)}\\ C_{b(m)}^{b(m-1)}=I+\frac{sin(\Delta \theta_m)}{\Delta\theta_m}(\Delta \vec \theta_m \times)^ +\frac{1-cos(\Delta \theta_m)}{\Delta\theta_m^2}(\Delta\vec \theta_m \times)^2 Cb(m)i=Cb(m1)iCb(m)b(m1)Cb(m)b(m1)=I+Δθmsin(Δθm)(Δθ m×)+Δθm21cos(Δθm)(Δθ m×)2

3.2 四元数微分方程以及求解

四元数微分方程,后一项是角速度零标量四元数。
Q ˙ b i = 1 2 ∗ Q b i ∗ ω i b b \dot Q_b^i=\frac{1}{2}*Q_b^i*\omega_{ib}^b Q˙bi=21Qbiωibb
四元数微分方程求解
Q b ( m ) i = Q b ( m − 1 ) i ∗ Q b ( m ) b ( m − 1 ) Q b ( m ) b ( m − 1 ) = [ c o s Δ θ m 2 Δ θ ⃗ m Δ θ m s i n Δ θ m 2 ] Q_{b(m)}^i=Q_{b(m-1)}^i*Q_{b(m)}^{b(m-1)}\\ Q_{b(m)}^{b(m-1)}=\begin{bmatrix} cos\frac{\Delta \theta_m}{2}\\ \frac {\Delta \vec \theta_m}{\Delta \theta_m} sin\frac{\Delta \theta_m}{2} \end{bmatrix} Qb(m)i=Qb(m1)iQb(m)b(m1)Qb(m)b(m1)=[cos2ΔθmΔθmΔθ msin2Δθm]

3.3 等效旋转矢量微分方程以及求解

等效旋转矢量微分方程,只在等效旋转矢量为小量时成立。
ϕ ˙ = ω + 1 2 ϕ × ω \dot \phi = \omega+\frac{1}{2}\phi \times \omega ϕ˙=ω+21ϕ×ω
等效旋转矢量求解,实际应用时一总是以t(m-1)为新的时间起点,phi(m-1)=0,计算等效旋转矢量,再利用四元数或者方向余弦递推方程。
Q b ( m ) i = Q b ( m − 1 ) i ∗ Q b ( m ) b ( m − 1 ) Q b ( m ) b ( m − 1 ) = [ c o s Δ ϕ m 2 Δ ϕ ⃗ m Δ ϕ m s i n Δ ϕ m 2 ] Q_{b(m)}^i=Q_{b(m-1)}^i*Q_{b(m)}^{b(m-1)}\\ Q_{b(m)}^{b(m-1)}=\begin{bmatrix} cos\frac{\Delta \phi_m}{2}\\ \frac {\Delta \vec \phi_m}{\Delta \phi_m} sin\frac{\Delta \phi_m}{2} \end{bmatrix} Qb(m)i=Qb(m1)iQb(m)b(m1)Qb(m)b(m1)=[cos2ΔϕmΔϕmΔϕ msin2Δϕm]
等效旋转矢量,二子样算法,如下:
ϕ ( T ) = Δ θ 1 + Δ θ 2 + 2 3 Δ θ 1 × Δ θ 2 \phi(T) = \Delta \theta_1+\Delta \theta_2+\frac{2}{3}\Delta \theta_1 \times \Delta \theta_2 ϕ(T)=Δθ1+Δθ2+32Δθ1×Δθ2
等效旋转矢量,单子样+前一周期算法,如下:
ϕ ( T ) = Δ θ 1 + 1 12 Δ θ 0 × Δ θ 1 \phi(T) = \Delta \theta_1+\frac{1}{12}\Delta \theta_0 \times \Delta \theta_1 ϕ(T)=Δθ1+121Δθ0×Δθ1

3.4 推导过程重要公式

角速度反对称矩阵转换坐标系(反对称矩阵相似变换公式,推导过程引入一个右向量实现,非常重要)
( ω i b i × ) = C b i ∗ ( ω i b b × ) ∗ C i b (\omega_{ib}^i \times)=C_b^i*(\omega_{ib}^b \times)*C_i^b (ωibi×)=Cbi(ωibb×)Cib
四元数转换坐标系
r i = Q b i ∗ r b ∗ Q i b r^i=Q_b^i*r^b*Q_i^b ri=QbirbQib
四元数左乘转矩阵乘法
P ∗ Q = M p ∗ Q = P 0 ∗ I + [ 0 − P v T P v P v × ] P*Q=M_p*Q=P_0*I+\begin{bmatrix} 0 &- P_v^T\\ P_v &P_v\times \end{bmatrix} PQ=MpQ=P0I+[0PvPvTPv×]
四元数右乘转矩阵乘法
P ∗ Q = M q ∗ P = Q 0 ∗ I + [ 0 − Q v T Q v − Q v × ] P*Q=M_q*P=Q_0*I+\begin{bmatrix} 0 &- Q_v^T\\ Q_v &-Q_v\times \end{bmatrix} PQ=MqP=Q0I+[0QvQvTQv×]

4 SINS公式

以下考虑了地球自转和地球曲率,不考虑的地方可以去掉相关项。
速度微分方程(这是所有推导的基础方程)
v ˙ e n n = C b n ∗ f b − ( 2 ∗ ω i e n + ω e n n ) × v e n n + g n \dot v_{en}^n=C_b^n*f^b-(2*\omega_{ie}^n+\omega_{en}^n)\times v_{en}^n+g^n v˙enn=Cbnfb(2ωien+ωenn)×venn+gn
姿态误差方程和速度误差方程
ϕ ˙ n = δ ω i e t + δ ω e t t − ( ω i e t + ω e t t ) × ϕ t + C b t ε b δ v ˙ n = C b n ∗ f b × ϕ n − ( 2 ∗ δ ω i e n + δ ω e n n ) × v n − ( 2 ∗ ω i e n + ω e n n ) × δ v n + C b t ∇ b \dot \phi^n=\delta\omega_{ie}^t+\delta\omega_{et}^t-(\omega_{ie}^t + \omega_{et}^t) \times \phi^t + C_b^t\varepsilon^b\\ \delta \dot v^n=C_b^n*f^b\times \phi^n-(2*\delta\omega_{ie}^n+\delta\omega_{en}^n)\times v^n-(2*\omega_{ie}^n+\omega_{en}^n)\times \delta v^n + C_b^t\nabla^b ϕ˙n=δωiet+δωett(ωiet+ωett)×ϕt+Cbtεbδv˙n=Cbnfb×ϕn(2δωien+δωenn)×vn(2ωien+ωenn)×δvn+Cbtb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值