1 反对称矩阵
V
=
[
0
−
v
3
v
2
v
3
0
−
v
1
−
v
2
v
1
0
]
V = \begin{bmatrix} 0 &-v3 &v2\\ v3 &0 &-v1\\ -v2 &v1 &0 \end{bmatrix}
V=
0v3−v2−v30v1v2−v10
反对称矩阵乘以向量等于向量叉乘
V
∗
b
⃗
=
V
⃗
×
b
⃗
V*\vec b = \vec V \times \vec b
V∗b=V×b
2 罗德里格斯公式
D = I + s i n ( ϕ ) ∗ ( u ⃗ × ) + ( 1 − c o s ( ϕ ) ) ∗ ( u ⃗ × ) 2 D = c o s ( ϕ ) ∗ I + ( 1 − c o s ( ϕ ) ) ∗ u ⃗ ∗ u ⃗ T + s i n ( ϕ ) ∗ ( u ⃗ × ) D=I+sin(\phi)*(\vec u \times) + (1-cos(\phi))*(\vec u \times)^2\\ D=cos(\phi)*I+(1-cos(\phi))*\vec u*\vec u^T + sin(\phi)*(\vec u \times) D=I+sin(ϕ)∗(u×)+(1−cos(ϕ))∗(u×)2D=cos(ϕ)∗I+(1−cos(ϕ))∗u∗uT+sin(ϕ)∗(u×)
3 姿态微分方程以及求解
3.1 方向余弦阵微分方程以及求解
微分方程
C
˙
b
i
=
C
b
i
∗
(
ω
i
b
b
×
)
\dot C_{b}^i=C_{b}^i*(\omega_{ib}^b \times)
C˙bi=Cbi∗(ωibb×)
求解结果
C
b
(
m
)
i
=
C
b
(
m
−
1
)
i
∗
C
b
(
m
)
b
(
m
−
1
)
C
b
(
m
)
b
(
m
−
1
)
=
I
+
s
i
n
(
Δ
θ
m
)
Δ
θ
m
(
Δ
θ
⃗
m
×
)
+
1
−
c
o
s
(
Δ
θ
m
)
Δ
θ
m
2
(
Δ
θ
⃗
m
×
)
2
C_{b(m)}^i = C_{b(m-1)}^i * C_{b(m)}^{b(m-1)}\\ C_{b(m)}^{b(m-1)}=I+\frac{sin(\Delta \theta_m)}{\Delta\theta_m}(\Delta \vec \theta_m \times)^ +\frac{1-cos(\Delta \theta_m)}{\Delta\theta_m^2}(\Delta\vec \theta_m \times)^2
Cb(m)i=Cb(m−1)i∗Cb(m)b(m−1)Cb(m)b(m−1)=I+Δθmsin(Δθm)(Δθm×)+Δθm21−cos(Δθm)(Δθm×)2
3.2 四元数微分方程以及求解
四元数微分方程,后一项是角速度零标量四元数。
Q
˙
b
i
=
1
2
∗
Q
b
i
∗
ω
i
b
b
\dot Q_b^i=\frac{1}{2}*Q_b^i*\omega_{ib}^b
Q˙bi=21∗Qbi∗ωibb
四元数微分方程求解
Q
b
(
m
)
i
=
Q
b
(
m
−
1
)
i
∗
Q
b
(
m
)
b
(
m
−
1
)
Q
b
(
m
)
b
(
m
−
1
)
=
[
c
o
s
Δ
θ
m
2
Δ
θ
⃗
m
Δ
θ
m
s
i
n
Δ
θ
m
2
]
Q_{b(m)}^i=Q_{b(m-1)}^i*Q_{b(m)}^{b(m-1)}\\ Q_{b(m)}^{b(m-1)}=\begin{bmatrix} cos\frac{\Delta \theta_m}{2}\\ \frac {\Delta \vec \theta_m}{\Delta \theta_m} sin\frac{\Delta \theta_m}{2} \end{bmatrix}
Qb(m)i=Qb(m−1)i∗Qb(m)b(m−1)Qb(m)b(m−1)=[cos2ΔθmΔθmΔθmsin2Δθm]
3.3 等效旋转矢量微分方程以及求解
等效旋转矢量微分方程,只在等效旋转矢量为小量时成立。
ϕ
˙
=
ω
+
1
2
ϕ
×
ω
\dot \phi = \omega+\frac{1}{2}\phi \times \omega
ϕ˙=ω+21ϕ×ω
等效旋转矢量求解,实际应用时一总是以t(m-1)为新的时间起点,phi(m-1)=0,计算等效旋转矢量,再利用四元数或者方向余弦递推方程。
Q
b
(
m
)
i
=
Q
b
(
m
−
1
)
i
∗
Q
b
(
m
)
b
(
m
−
1
)
Q
b
(
m
)
b
(
m
−
1
)
=
[
c
o
s
Δ
ϕ
m
2
Δ
ϕ
⃗
m
Δ
ϕ
m
s
i
n
Δ
ϕ
m
2
]
Q_{b(m)}^i=Q_{b(m-1)}^i*Q_{b(m)}^{b(m-1)}\\ Q_{b(m)}^{b(m-1)}=\begin{bmatrix} cos\frac{\Delta \phi_m}{2}\\ \frac {\Delta \vec \phi_m}{\Delta \phi_m} sin\frac{\Delta \phi_m}{2} \end{bmatrix}
Qb(m)i=Qb(m−1)i∗Qb(m)b(m−1)Qb(m)b(m−1)=[cos2ΔϕmΔϕmΔϕmsin2Δϕm]
等效旋转矢量,二子样算法,如下:
ϕ
(
T
)
=
Δ
θ
1
+
Δ
θ
2
+
2
3
Δ
θ
1
×
Δ
θ
2
\phi(T) = \Delta \theta_1+\Delta \theta_2+\frac{2}{3}\Delta \theta_1 \times \Delta \theta_2
ϕ(T)=Δθ1+Δθ2+32Δθ1×Δθ2
等效旋转矢量,单子样+前一周期算法,如下:
ϕ
(
T
)
=
Δ
θ
1
+
1
12
Δ
θ
0
×
Δ
θ
1
\phi(T) = \Delta \theta_1+\frac{1}{12}\Delta \theta_0 \times \Delta \theta_1
ϕ(T)=Δθ1+121Δθ0×Δθ1
3.4 推导过程重要公式
角速度反对称矩阵转换坐标系(反对称矩阵相似变换公式,推导过程引入一个右向量实现,非常重要)
(
ω
i
b
i
×
)
=
C
b
i
∗
(
ω
i
b
b
×
)
∗
C
i
b
(\omega_{ib}^i \times)=C_b^i*(\omega_{ib}^b \times)*C_i^b
(ωibi×)=Cbi∗(ωibb×)∗Cib
四元数转换坐标系
r
i
=
Q
b
i
∗
r
b
∗
Q
i
b
r^i=Q_b^i*r^b*Q_i^b
ri=Qbi∗rb∗Qib
四元数左乘转矩阵乘法
P
∗
Q
=
M
p
∗
Q
=
P
0
∗
I
+
[
0
−
P
v
T
P
v
P
v
×
]
P*Q=M_p*Q=P_0*I+\begin{bmatrix} 0 &- P_v^T\\ P_v &P_v\times \end{bmatrix}
P∗Q=Mp∗Q=P0∗I+[0Pv−PvTPv×]
四元数右乘转矩阵乘法
P
∗
Q
=
M
q
∗
P
=
Q
0
∗
I
+
[
0
−
Q
v
T
Q
v
−
Q
v
×
]
P*Q=M_q*P=Q_0*I+\begin{bmatrix} 0 &- Q_v^T\\ Q_v &-Q_v\times \end{bmatrix}
P∗Q=Mq∗P=Q0∗I+[0Qv−QvT−Qv×]
4 SINS公式
以下考虑了地球自转和地球曲率,不考虑的地方可以去掉相关项。
速度微分方程(这是所有推导的基础方程)
v
˙
e
n
n
=
C
b
n
∗
f
b
−
(
2
∗
ω
i
e
n
+
ω
e
n
n
)
×
v
e
n
n
+
g
n
\dot v_{en}^n=C_b^n*f^b-(2*\omega_{ie}^n+\omega_{en}^n)\times v_{en}^n+g^n
v˙enn=Cbn∗fb−(2∗ωien+ωenn)×venn+gn
姿态误差方程和速度误差方程
ϕ
˙
n
=
δ
ω
i
e
t
+
δ
ω
e
t
t
−
(
ω
i
e
t
+
ω
e
t
t
)
×
ϕ
t
+
C
b
t
ε
b
δ
v
˙
n
=
C
b
n
∗
f
b
×
ϕ
n
−
(
2
∗
δ
ω
i
e
n
+
δ
ω
e
n
n
)
×
v
n
−
(
2
∗
ω
i
e
n
+
ω
e
n
n
)
×
δ
v
n
+
C
b
t
∇
b
\dot \phi^n=\delta\omega_{ie}^t+\delta\omega_{et}^t-(\omega_{ie}^t + \omega_{et}^t) \times \phi^t + C_b^t\varepsilon^b\\ \delta \dot v^n=C_b^n*f^b\times \phi^n-(2*\delta\omega_{ie}^n+\delta\omega_{en}^n)\times v^n-(2*\omega_{ie}^n+\omega_{en}^n)\times \delta v^n + C_b^t\nabla^b
ϕ˙n=δωiet+δωett−(ωiet+ωett)×ϕt+Cbtεbδv˙n=Cbn∗fb×ϕn−(2∗δωien+δωenn)×vn−(2∗ωien+ωenn)×δvn+Cbt∇b