Android 运行 python

本文介绍如何在手机上通过pydroid和Termux实现Python编程。pydroid为手机提供了一个Python IDE,而Termux则创建了一个完整的Linux环境,支持Python等语言的运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

本菜鸡不才,却老想整点奇奇怪怪的东西,这不,最近我又想 在手机上运行 python ,可手机并没有自带可以让我运行 python 的环境,这咋办?
好像就只有两种路线:

  • 下载个 pycharm 手机版 (目前应该还没这东西,只是形容一下,指的是手机上 python 的 IDE,つ﹏⊂)
  • 下载个终端,按照 linux 安装 python 的方法下载个 python,再运行
    • 原因:Android 是基于 linux 系统开发的操作系统

实现

手机上的 python IDE — pydroid

  • 我使用的手机上的 python IDE 名字叫做 pydroid ,各位熟悉 python 的小伙伴应该都晓得(我不属于熟悉 python 的小伙伴,我只是个小菜鸡)
  • 下载地址的话 百度搜得 ,参考地址如 这个
  • 界面如下
    在这里插入图片描述
  • 有各种功能,还算比较齐全
    在这里插入图片描述
  • 当然,也有起飞必不可少的小工具---- pip ,这里提供快速下载常用的库(偷偷说一句,不知道是不是因为我的手机不好的问题,我安装 jupyter, pandas, numpy, matplotlib 之类的库一直报错)
    在这里插入图片描述
  • 总的来说, 如果想要平常电脑不在身边或者不方便拿出来,但手痒痒,想撸会儿代码的小伙伴 ,可以整个玩玩,还不赖 😁

手机上的终端 — Termux

  • 我知道这个软件还有段奇缘:
    • 我的一个老师在 1024程序员节 的时候用这个软件 echo ‘Hello, programmer’,然后截屏发了个 pyq,那时候我不知道这个 Tremux 是个什么东西,问了一下百度后,才晓得
  • Termux 是一个 Android 终端仿真应用程序,用于在 Android 手机上搭建一个完整的 Linux 环境。 不需要 root 权限 Termux 就可以正常运行。
  • Termux 基本实现 Linux 下的许多基本操作。可以 使用 Termux 安装 python,并实现 python 编程 (我们的目标哦),可以用手机架设 Server,同样可以用于渗透测试等等
  • 界面如下
    在这里插入图片描述
  • 使用命令 pkg install python 即可起飞🛫,还不快去试试🧐
    • 我本来不知道这个命令的,但当我在终端输入 python 后,提示我系统还没有 python,使用上边那个命令安装,我乖乖的接受建议,安装了,现在,芜湖起飞!



结尾

以上就是我要分享的内容,因为学识尚浅,会有不足,还请各位大佬指正。
有什么问题也可在评论区留言。
在这里插入图片描述

DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值