本篇笔记首先介绍了线性相关和线性无关的概念,关键是找到一组不全为零相关系数使得等成立;然后重点介绍了一些重要的结论,以及向量组线性相关和线性无关的几个充要条件。
1 线性相关与线性无关
线性相关:设 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn为 n n n个 m m m维向量,若存在一组不全为零的数 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn,使得 k 1 α 1 + k 2 α 2 + . . . + k n α n = O k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n=O k1α1+k2α2+...+knαn=O成立,则称向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn线性相关,而称 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn为一组相关系数;否则,称向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn线性无关。
只要找到一组就可以,能找到多组肯定也可以。
例如: 2 × ( 1 0 ) + 3 × ( 0 1 ) − 1 × ( 2 3 ) = O 2\times\begin{pmatrix}1\\0\end{pmatrix}+3\times\begin{pmatrix}0\\1\end{pmatrix}-1\times\begin{pmatrix}2\\3\end{pmatrix}=O 2×(10)+3×(01)−1×(23)=O,相关系数为 2 , 3 , − 1 2,3,-1 2,3,−1,不全为0;
又如: 1 × ( 2 0 ) − 2 × ( 1 0 ) + 0 × ( 8 9 ) = O 1\times\begin{pmatrix}2\\0\end{pmatrix}-2\times\begin{pmatrix}1\\0\end{pmatrix}+0\times\begin{pmatrix}8\\9\end{pmatrix}=O 1×(20)−2×(10)+0×(89)=O,相关系数为 1 , − 2 , 0 1,-2,0 1,−2,0,也不全为0(注意:不是全不为0,有0可以,但别都是0就行)。
再如: 0 × ( 2 0 ) + 0 × ( 1 0 ) + 0 × ( 8 9 ) = O 0\times\begin{pmatrix}2\\0\end{pmatrix}+0\times\begin{pmatrix}1\\0\end{pmatrix}+0\times\begin{pmatrix}8\\9\end{pmatrix}=O 0×(20)+0×(10)+0×(89)=O,等式虽然成立,但相关系数为 0 , 0 , 0 0,0,0 0,0,0,不能判断向量是否线性相关或线性无关。
线性无关:
{ ① 不 是 线 性 相 关 ; ② 找 不 到 一 组 不 全 为 零 的 相 关 系 数 使 等 式 成 立 ; ③ 只 有 全 为 零 的 相 关 系 统 使 等 式 成 立 。 \begin{cases} ①&不是线性相关;\\ ②&找不到一组不全为零的相关系数使等式成立;\\ ③&只有全为零的相关系统使等式成立。 \end{cases} ⎩⎪⎨⎪⎧①②③不是线性相关;找不到一组不全为零的相关系数使等式成立;只有全为零的相关系统使等式成立。
2 一些结论
① 若向量组中两个向量的分量对应成比例,则向量组必线性相关。
例如: − 1 × ( 1 2 ) + 1 2 × ( 2 4 ) + 0 × ( 5 19 ) + 0 × ( − 1 99 ) = O -1\times\begin{pmatrix}1\\2\end{pmatrix}+\frac{1}{2}\times\begin{pmatrix}2\\4\end{pmatrix}+0\times\begin{pmatrix}5\\19\end{pmatrix}+0\times\begin{pmatrix}-1\\99\end{pmatrix}=O −1×(12)+21×(24)+0×(519)+0×(−199)=O
② 含有零向量的任意向量组必线性相关。
例如: 0 α 1 + 0 α 2 + 0 α 3 + 1 × O = O 0\alpha_1+0\alpha_2+0\alpha_3+1\times{O}=O 0α1+0α2+0α3+1×O=O
③ 特别地:一个零向量必线性相关。
例如: 1 × O = O 1\times{O}=O 1×O=O
④ 任意一个非零向量必线性无关。
假设非零向量 α ≠ 0 \alpha{\neq}0 α=0,要证其线性相关,那么 k α = 0 k\alpha=0 kα=0,所以 k = 0 k=0 k=0(详见线性代数学习笔记(二十)——向量的定义例3.1.1),这与线性相关定义矛盾,故任意一个非零向量必线性无关。
⑤ 由一个向量 α \alpha α构成的向量组线性相关 ⟺ α = 0 {\Longleftrightarrow}\alpha=0 ⟺α=0。
3 部分与整体向量组的线性关系
★★ 例8:若向量组 α 1 , α 2 , . . . α r \alpha_1,\alpha_2,...\alpha_r α1,α2,...αr线性相关,那么向量组 α 1 , α 2 , . . . α r , α r + 1 , . . . , α s \alpha_1,\alpha_2,...\alpha_r\color{red}{,\alpha_{r+1},...,\alpha_s} α1,α2,...αr,αr+1,...,αs也线性相关。
例如,若向量组 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性相关,那么向量组 α 1 , α 2 , α 3 , α 4 , α 5 \alpha_1,\alpha_2,\alpha_3\color{red}{,\alpha_4,\alpha_5} α1,α2,α3,α4,α5也线性相关。
证明:因为向量组 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α