学习笔记
文章平均质量分 85
雏鹰高飞
不要让任何事情成为你不去学习的理由!
展开
-
线性代数学习笔记(二十九)——方程组解的结构(一)
本篇笔记回顾了线性方程组解的三种情况,并讨论了齐次线性方程组解的结构,并介绍了齐次线性方程组解的相关性质。其中重点讨论了基础解系定义,以及基础解系的求法和解题步骤,并对基础解系结果进行验证;还讨论了自由未知量如何取值,以及解向量的个数问题,并对解题过程进行梳理;然后通过举例说明了解题步骤和一些注意事项,最后还强调了“两个矩阵相乘等于零时,它们的秩之和小于等于n”这个结论的重要性。原创 2023-01-30 14:51:28 · 10433 阅读 · 12 评论 -
线性代数学习笔记(二十八)——齐次方程组的解
的情况;然后通过上一章节的定理总结出几个推论并做了一定的讨论;最后通过求齐次线性方程组的例子来判断向量组的相关性,同时求解一组相关系数。原创 2020-08-16 13:05:53 · 44594 阅读 · 17 评论 -
线性代数学习笔记(二十七)——线性方程组有解判定
本篇笔记首先讨论如何将线性方程组写成矩阵或向量形式,并给出系数矩阵和增广系数矩阵的概念;然后通过判断系数矩阵的秩和增广系数矩阵的秩的关系,讨论方程组有唯一解、有无穷多解还是无解的条件并给出了相关判定;最后总结了通过系数矩阵求解线性方程组的步骤,并通过例子进行了实践。原创 2020-08-15 19:21:43 · 30529 阅读 · 6 评论 -
线性代数学习笔记(二十六)——线性方程组
本篇笔记通过经典的“鸡兔同笼”问题引出了方程组,然后使用消元法对方程组进行求解,并将求解过程与矩阵初等行变换进行对应,最后还将方程组写成了矩阵的形式。原创 2020-08-11 22:59:15 · 1342 阅读 · 0 评论 -
线性代数学习笔记(二十五)——向量组的秩(二)
本篇笔记首介绍了矩阵的行秩和列秩,即矩阵的行秩等于矩阵的列秩等于矩阵的秩,而且矩阵乘积的秩不大于每个因子的秩;还介绍了求矩阵行秩和列秩的方法,即化为阶梯形矩阵;最后重点介绍了极大线性无关组的求法,根据矩阵的初等行(列)变换不改变其列(行)向量间的线性关系,将矩阵化为行简化阶梯形,然后直接写出极大线性无关组和其向量的线性表示。原创 2020-08-09 23:33:51 · 7924 阅读 · 0 评论 -
线性代数学习笔记(二十四)——向量组的秩(一)
本篇笔记首先回顾了矩阵的秩,然后通过两个例子引入了极大线性无关组的定义,并由极大无关组定义介绍了一些结论,还介绍了相关定理;然后给出了向量组秩的定义,以及一些结论和定理;向量组的秩与矩阵的秩,定义方式完全不同,但两者之间却有千丝万缕的联系,后面还会总结它们之间的关系。原创 2020-08-08 21:33:16 · 9086 阅读 · 0 评论 -
线性代数学习笔记(二十三)——线性相关线性无关
本篇笔记主要围绕向量组的线性表示、线性相关和线性无关介绍相关定理,这些定理在做证明题时会经常用到,需要重点掌握和运用。原创 2020-08-08 16:20:42 · 6447 阅读 · 0 评论 -
线性代数学习笔记(二十二)——向量间的线性关系(二)
本篇笔记首先介绍了线性相关和线性无关的概念,关键是找到一组不全为零相关系数使得等成立;然后重点介绍了一些重要的结论,以及向量组线性相关和线性无关的几个充要条件。原创 2020-08-02 18:58:45 · 7061 阅读 · 2 评论 -
线性代数学习笔记(二十一)——向量间的线性关系(一)
本篇笔记首先介绍了线性组合,并给出了线性表示、线性表出和组合系数的概念;然后介绍了线性组合的相关性质,其中还介绍了单位向量组或基本单位向量组的定义,并将判断是否是线性组合转化为求方程组的解;最后介绍了向量组等价的定义和向量组等价的性质,包括反身性、对称性和传递性。原创 2020-08-02 13:31:28 · 3695 阅读 · 0 评论 -
线性代数学习笔记(二十)——向量的定义
本篇笔记首先通过举例来说明向量在生活里都是对应着实实在在具体的东西,然后引出向量的定义以及相关概念,如向量、向量的分量、向量的维数、行向量、列向量、零向量、负向量、向量相等、向量加法、向量减法和向量数乘等,最后还总结了向量的运算规律。原创 2020-08-01 23:09:28 · 4412 阅读 · 2 评论 -
线性代数学习笔记(十九)——矩阵的秩(二)
本篇笔记首先介绍了矩阵行满秩、列满秩、满秩和降秩等概念,并讨论了矩阵秩与r阶子式值的关系;然后重点介绍了阶梯形矩阵和行简化阶梯形矩阵,该部分内容非常重要,后续章节和考试经常会用到;同时还讨论了阶梯形矩阵的用处和将矩阵化为阶梯形,并由此求矩阵的秩;最后介绍了矩阵秩的两个性质,矩阵的秩与其转置矩阵的秩相等,任意矩阵乘以可逆矩阵秩不变。原创 2020-07-18 19:56:06 · 11704 阅读 · 5 评论 -
线性代数学习笔记(十八)——矩阵的秩(一)
本篇笔记先回顾了k阶子式的定义,并计算各子式的值;然后引出了矩阵秩的定义,即矩阵的秩是非零子式的最高阶数;还通过不同结构图形分类的方式来类比矩阵秩的概念。原创 2020-07-18 11:17:58 · 7812 阅读 · 3 评论 -
线性代数学习笔记(十七)——初等变换(三)
本篇笔记首先回顾了伴随矩阵法求逆矩阵,因为过程过于复杂,所以引出初等变换法求逆矩阵,并推导了初等变换法求逆矩阵的思路;然后通过一个例子介绍了初等变换法求逆矩阵的过程,并对注意事项进行了总结;最后还讨论了通过初等变换判断矩阵可逆性、初等变换与行列式值的关系以及初等变换法求逆矩阵解题过程思路和总结。原创 2020-07-17 22:40:28 · 4023 阅读 · 0 评论 -
线性代数学习笔记(十六)——初等变换(二)
本篇笔记首先介绍了初等方阵的定义、初等变换和初等方阵的关系、初等方阵求行列式、初等方阵求逆矩阵以及初等方阵求转置;然后介绍了初等方阵的用处,以及任意矩阵、初等矩阵和标准形之间的关系;最后介绍了矩阵可逆的两个充分必要条件,一个是矩阵的标准形为单位阵,另一个是矩阵可以表示成一些初等矩阵的乘积。原创 2020-07-16 20:27:32 · 4331 阅读 · 3 评论 -
线性代数学习笔记(十五)——初等变换(一)
本篇笔记首先讨论了矩阵的初等变换,包括初等行变换和初等列变换两类,每一类初等变换又有三种变换规则,需要注意该初等变换与行列式对应的性质没有任何关系;然后讨论了初等变换和标准形的关系,任意矩阵都可以通过(行和列)初等变换化为标准形;最后还讨论了矩阵等价的定义及其性质,其实矩阵等价是矩阵之间的一种关系,可以探究矩阵内在的一些属性。原创 2020-07-12 23:23:34 · 34751 阅读 · 3 评论 -
线性代数学习笔记(十四)——分块矩阵
本篇笔记首先介绍了分块矩阵的概念,并介绍了按行或按列进行分块的两种常见分块方式,还讨论了矩阵标准形的主要基本特征,然后重点讨论了分块矩阵的几种运算,包括分块矩阵的和、差、数乘和乘积,以及对角型分块矩阵、三角分块矩阵和下三角分块矩阵的和、差、数乘和乘积,最后还介绍了分块矩阵转置和求逆的运算。原创 2020-07-12 16:56:01 · 12348 阅读 · 1 评论 -
线性代数学习笔记(十三)——逆矩阵(二)
本篇笔记首先回顾了伴随矩阵,随后给出了逆矩阵的定义,并通过定理给出了采用伴随矩阵法求逆矩阵的公式以及推论,由于伴随矩阵法求逆矩阵计算量过于复杂,一般不常用,更常用的方法是后续介绍的初等变换法;使用推论证明某矩阵的逆等于另一矩阵的关键在于:验证某矩阵乘以另一矩阵等于单位阵。然后介绍矩阵方程,需要注意求矩阵方程的几大易错点,最后还介绍了逆矩阵的性质,并对伴随矩阵做了总结。原创 2020-07-11 08:15:38 · 5600 阅读 · 2 评论 -
线性代数学习笔记(十二)——逆矩阵(一)
本篇笔记首先回顾了矩阵的运算,并通过数的除法讨论逆矩阵的引入部分,需要注意:永远不要把矩阵放到分母上!所以矩阵不存在除法的说法;然后通过矩阵的属性讨论了方阵的行列式,以及方阵行列式的三条性质;最后重点介绍了方阵的伴随矩阵,包括伴随矩阵的求法,以及伴随矩阵相关的定理和推论。原创 2020-07-05 15:40:45 · 3707 阅读 · 1 评论 -
线性代数学习笔记(十一)——特殊矩阵
本篇笔记介绍了几种特殊矩阵,包括数量矩阵、对角型矩阵、三角型矩阵、对称矩阵和反对称矩阵,需要注意的是这些特殊矩阵都是方阵。其中对称矩阵和反对称矩阵的两个结论比较重要,在做题时基本都会用到,需要记住。原创 2020-07-05 00:16:11 · 7101 阅读 · 0 评论 -
线性代数学习笔记(十)——矩阵运算(二)
本篇笔记讲解矩阵的幂运算和矩阵的转置,其中矩阵进行幂运算的前提是矩阵为方阵,矩阵幂运算的两条性质与数的幂运算规则类似;矩阵转置的定义与行列式转置类似,但要注意由于矩阵的行数和列数不同,所以转置之后行数和列数变换。原创 2020-07-04 21:24:40 · 8545 阅读 · 0 评论 -
线性代数学习笔记(九)——矩阵运算(一)
本篇笔记记录了矩阵的加法和减法、矩阵的数乘和矩阵的乘法运算。需要注意矩阵的加法和减法必须要同型矩阵才行运算;矩阵的数乘是将某数乘以矩阵中的所有元素,与行列式不同,矩阵所有元素均有公因子k,该公因子只向外提1次,而非行列式的提n次;矩阵的乘法规则与行列式类似,但有左乘和右乘之分,需要注意矩阵的左右顺序;如果两个矩阵左乘和右乘的结果相等,那么称这两个矩阵是可交换的,并进一步讨论了矩阵可交换的条件。原创 2020-07-04 19:18:15 · 45052 阅读 · 4 评论 -
线性代数学习笔记(八)——矩阵概念
本笔记通过航班信息和人际关系的图表引入矩阵的定义,探讨了矩阵和行列式的关系,并给出了矩阵相关概念的说明,例如实矩阵、复矩阵、行矩阵、列矩阵、零矩阵、负矩阵、方阵、单位阵和同型矩阵等。原创 2020-06-29 22:42:20 · 1610 阅读 · 2 评论 -
线性代数学习笔记(七)——克莱姆法则
本篇笔记介绍了用于解方程组的克莱姆法则,该法则只适用于方程个数等于未知量个数的方程组;同时还介绍了齐次线性方程组,并讨论了方程组有零解或有非零解的条件。需要注意的是:克莱姆法则由于计算量比较大,一般不会直接用于求方程组的解,而是用于讨论方程组有零解或非零解。原创 2020-06-28 23:04:53 · 32315 阅读 · 0 评论 -
线性代数学习笔记(六)——行列式的计算(二)
本篇笔记介绍了三叉型行列式、范德蒙德行列式、反对称行列式和对称行列式。其中三叉型行列式采用加边法求值,范德蒙德行列式通过公式求值,还介绍了范德蒙德行列式公式的证明,以及一些比较隐秘的范德蒙德行列式。对于反对称行列式和对称行列式介绍了一些性质,其中奇数阶的反对称行列式值为零。原创 2020-06-27 20:04:12 · 8047 阅读 · 4 评论 -
线性代数学习笔记(五)——行列式的计算(一)
本篇笔记介绍行列式的计算方法,如果行列式中的0比较少,一般先使用行列式的性质(常用性质2和性质7)将其化成上三角行列式。尽量将左上角元素先变为1或-1,避免出现分数。求余子式或代数余子式时,往往需要构造与其对应的行列式,并转化为求新行列式的值。涉及符号运算的$n$阶行列式,解题技巧是“构造行和”,然后化为特殊形式(如上三角、下三角或对角型)的行列式进行求值。原创 2020-06-27 14:11:05 · 5569 阅读 · 3 评论 -
线性代数学习笔记(四)——行列式按行展开
本篇笔记介绍了行列式按行或按列展开定理、异乘变零定理、拉普拉斯定理和行列式相乘定理。原创 2020-06-25 21:49:35 · 27899 阅读 · 2 评论 -
线性代数学习笔记(三)——行列式的性质
本篇文章首先引入行列式转置的概念,然后逐一给出了行列式的七个基本性质,需要注意的是:对行成立的性质对列也同样成立。最后强调了性质7的重要性,并总结了在做题过程中的规范和注意事项。原创 2020-06-25 16:01:57 · 6011 阅读 · 2 评论 -
线性代数学习笔记(二)——n阶行列式
通过分析三阶行列式每项的符号与列标排列、逆序数和奇偶性的关系,推广得到n阶行列式的第一种定义(按行展开)。然后分析了几种特殊的行列式:下三角行列式、上三角行列式、对角型行列式以及对应三种“山寨版”的行列式,并讨论了这些特殊行列式的值和每个展开项的符号。最后给出了行列式的第二种定义(按列展开)和第三种定义(即不按行,也不按列展开),并分析了此种定义下行列式的值和每个展开项的符号。原创 2020-06-23 21:30:21 · 16777 阅读 · 0 评论 -
线性代数学习笔记(一)——二阶和三阶行列式
本篇笔记从解方程组开始,并引入一种新运算,然后了解二阶行列式和三阶行列式相关定义,如元素、行标、列标、主对角线、次对角线等。同时为了研究行列式展开项与元素下标之间的关系,还引入了排列、逆序、逆序数、奇排列、偶排列、标准排列、自然排列、N级标准排列以及对换等概念。原创 2020-06-22 21:39:58 · 9176 阅读 · 4 评论 -
基于 Docker 搭建 Consul 多数据中心集群
本文介绍了在 Windows 10 上基于 Docker 搭建 Consul 多数据中心集群的步骤,包括 Consul 镜像的拉取和容器的创建,每个数据中心对应服务端节点和客户节点的创建,节点之间相互加入组成集群,数据中心之间进行关联。多数据中心集群建立之后,通过 Consul 提供的 WEB UI 可以对集群中每个节点健康状况和服务的监控。最后列出了几个常用的命令,用于查看数据中心和节点的状态,以及对节点进行一些操作。原创 2018-09-07 11:05:12 · 4048 阅读 · 2 评论 -
计算机操作系统笔记(7)--进程管理之线程
线程是进程的一条执行路径,它包含独立的堆栈和CPU寄存器状态,每个线程共享其所附属的进程的所有资源,包括打开的文件、页表(因此也就共享整个用户态地址空间)、信号标识及动态分配的内存等等。原创 2016-11-22 14:39:59 · 562 阅读 · 0 评论 -
计算机操作系统笔记(6)--进程管理之进程通信
进程通信是指进程之间的信息交换,进程通信分为低级通信和高级通信。低级通信:进程间仅交换一些状态和少量数据。如:进程之间的互斥和同步。信号量机制作为通信工具的缺点:a.效率低;b.通信对用户不透明。高级通信:进程间可交换大量数据。用户可直接利用操作系统提供的一组通信命令,高效地传送大量数据的一种通信方式。操作系统隐藏了进程通信的细节,对用户透明,减少了通信程序编制上的复杂性。原创 2016-11-22 11:50:55 · 1531 阅读 · 0 评论 -
计算机操作系统笔记(1)--操作系统引论
操作系统是直接控制和管理计算机硬件、软件资源,合理地对各类作业进行调度,以方便用户使用的程序集合。原创 2016-11-15 14:12:29 · 762 阅读 · 0 评论 -
计算机操作系统笔记(2)--进程管理之进程的基本概念
程序的顺序执行及其特征 ①顺序性:处理机的操作严格按照程序所规定的顺序执行。 ②封闭性:程序一旦开始执行,其计算结果不受外界因素的影响。 ③可再现性:程序执行的结果与它的执行速度无关(即与时间无关),而只与初始条件有关。原创 2016-11-15 22:35:17 · 778 阅读 · 0 评论 -
计算机操作系统笔记(3)--进程管理之进程控制
进程控制是对系统中的全部进程实施有效的管理,包括进程创建、终止、进程阻塞和唤醒。原创 2016-11-15 22:39:09 · 825 阅读 · 0 评论 -
计算机操作系统笔记(4)--进程管理之进程同步
理解临界资源和临界区的概念,熟练掌握利用信号量机制解决进程同步问题。对多个相关进程在执行次序上进行协调,使并发执行的诸进进程之间能有效地共享资源和相互合作,从而使用程序的执行好具有可再现性。原创 2016-11-21 17:18:16 · 1784 阅读 · 0 评论 -
计算机操作系统笔记(5)--进程管理之经典进程的同步问题
本文分别介绍三个经典进程的同步问题,即“生产者-消费者问题”、“哲学家进餐问题”以及“读者-写者问题”。原创 2016-11-22 09:46:07 · 3086 阅读 · 0 评论