apollo 定位localization代码NDT算法模块解析(四)

ndt_solver 和ndt_voxel_grid_covariance



前言

在这里插入图片描述

一、SetInputTarget()

对地图点云进行了滤波处理;
设置地图点云的体素滤波分辨率;
输入算法目标点云,即地图点云;

inline void SetInputTarget(const std::vector<Leaf> &cell_leaf,
                             const PointCloudTargetConstPtr &cloud) {
    //输入数据检查
    if (cell_leaf.empty()) {
      AWARN << "Input leaf is empty.";
      return;
    }
    if (cloud->points.empty()) {
      AWARN << "Input target is empty.";
      return;
    }
	//匹配目标点云赋值
    target_ = cloud;
    //ndt_voxel_grid_covariance 文件类
    target_cells_.SetVoxelGridResolution(resolution_, resolution_, resolution_);//设置分辨率
    target_cells_.SetInputCloud(cloud);//输入数据
    target_cells_.filter(cell_leaf, true);//滤波
  }

二 、SetInputSource()

输入实时激光点云数据,并保存到ndt_solver 的 input_中

 inline void SetInputSource(const PointCloudTargetConstPtr &cloud) {
    if (cloud->points.empty()) {
      AWARN << "Input source is empty.";
      return;
    }
    input_ = cloud;
  }

三 、filter()

对地图点云进行滤波,去掉小于6个点的网格(NDT算法原理决定的,),并将结果放入kdtree_,便于搜索;

//
  inline void filter(const std::vector<Leaf> &cell_leaf,
                     bool searchable = true) {
    voxel_centroids_ = PointCloudPtr(new PointCloud);
    SetMap(cell_leaf, voxel_centroids_);//进行滤波,去掉小于6个的点
    if (voxel_centroids_->size() > 0) {
      kdtree_.setInputCloud(voxel_centroids_);//将滤波处理后的地图点云放入kdtree中,便于NDT算法搜索
    }
  }

2.1.SetMap()

对地图点云进行滤波处理,去掉网格内小于6个的点,输出点云坐标(x,y,z)及对应中心点的地图坐标编号;
最后将结果保存到output中;
至少需要包含 6 个点是为了防止共面或共线,以计算 Σ的逆;

void VoxelGridCovariance<PointT>::SetMap(const std::vector<Leaf>& map_leaves,
                                         PointCloudPtr output) {
  voxel_centroids_leaf_indices_.clear();

  // Has the input dataset been set already
  //判断是否有地图点云数据
  if (!input_) {
    AWARN << "No input dataset given. ";
    output->width = output->height = 0;
    output->points.clear();
    return;
  }

  // Copy the header + allocate enough space for points
  output->height = 1;
  output->is_dense = true;//不包涵Inf/NaN这种值无限值(包含为false)
  output->points.clear();

  // Get the minimum and maximum dimensions
  Eigen::Vector4f min_p, max_p;
  pcl::getMinMax3D<PointT>(*input_, min_p, max_p); //获取最大、最小尺寸,即地图点最大,最小值

  Eigen::Vector4f left_top = Eigen::Vector4f::Zero();
  left_top.block<3, 1>(0, 0) = map_left_top_corner_.cast<float>();//类型转换
  min_p -= left_top;
  max_p -= left_top;

  // Compute the minimum and maximum bounding box values
  //将x,y,z 转为 box 值,类似栅格地图像素值
  min_b_[0] = static_cast<int>(min_p[0] * inverse_leaf_size_[0]); 
  max_b_[0] = static_cast<int>(max_p[0] * inverse_leaf_size_[0]);
  min_b_[1] = static_cast<int>(min_p[1] * inverse_leaf_size_[1]);
  max_b_[1] = static_cast<int>(max_p[1] * inverse_leaf_size_[1]);
  min_b_[2] = static_cast<int>(min_p[2] * inverse_leaf_size_[2]);
  max_b_[2] = static_cast<int>(max_p[2] * inverse_leaf_size_[2]);

  // Compute the number of divisions needed along all axis
  div_b_ = max_b_ - min_b_ + Eigen::Vector4i::Ones(); //计算沿所有轴所需的分段数
  div_b_[3] = 0;

  // Set up the division multiplier
  divb_mul_ = Eigen::Vector4i(1, div_b_[0], div_b_[0] * div_b_[1], 0);

  // Clear the leaves
  leaves_.clear();

  output->points.reserve(map_leaves.size());
  voxel_centroids_leaf_indices_.reserve(leaves_.size());

  for (unsigned int i = 0; i < map_leaves.size(); ++i) {
    const Leaf& cell_leaf = map_leaves[i];
    Eigen::Vector3d local_mean = cell_leaf.mean_ - map_left_top_corner_;
    int ijk0 =
        static_cast<int>(local_mean(0) * inverse_leaf_size_[0]) - min_b_[0];
    int ijk1 =
        static_cast<int>(local_mean(1) * inverse_leaf_size_[1]) - min_b_[1];
    int ijk2 =
        static_cast<int>(local_mean(2) * inverse_leaf_size_[2]) - min_b_[2];

    // Compute the centroid leaf index
    int idx = ijk0 * divb_mul_[0] + ijk1 * divb_mul_[1] + ijk2 * divb_mul_[2];//求中心点对应的index 为什么这样弄?地图的格式原因?

    Leaf& leaf = leaves_[idx];
    leaf = cell_leaf;
	//体素中包含的点必须大于6个
    if (cell_leaf.nr_points_ >= min_points_per_voxel_) {
      output->push_back(PointT());
      output->points.back().x = static_cast<float>(leaf.mean_[0]);
      output->points.back().y = static_cast<float>(leaf.mean_[1]);
      output->points.back().z = static_cast<float>(leaf.mean_[2]);
      voxel_centroids_leaf_indices_.push_back(idx);
    }
  }
  output->width = static_cast<uint32_t>(output->points.size());
}

总结

版权申明:转载请注明出处,严禁用于商业用途。

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Apollo Planning决策规划算法在无人驾驶领域中被广泛应用,在自动驾驶车辆中起着至关重要的作用。该算法主要通过对车辆周围环境的感知和分析,实现智能驾驶路线的规划和决策,确保车辆安全行驶。 该算法代码主要包含三个部分:感知模块、规划模块和控制模块。其中感知模块主要负责采集车辆周围的环境信息,包括车辆所处的位置、路况、障碍物等。规划模块通过对这些信息的分析,提出一系列可能的驾驶路线,并通过评估这些路线的优劣来选择最佳驾驶路线。控制模块负责实现规划模块中选择的最佳驾驶路线,并控制车辆按照路线行驶。 在Apollo Planning决策规划算法中,规划模块是实现驾驶决策的最重要模块,也是最具技术难度的模块。规划模块通过对车辆当前状态和环境信息的分析,提出一系列汽车驾驶路线。该算法采用在线生成路线方案的方法,路线生成的步骤如下: 1. 动态路径规划:根据车辆的位置和行驶状态,实时选择当前最佳的驾驶路线。 2. 静态路线生成:基于当前车辆所处的环境信息,生成固定的驾驶路线。 3. 组合路径规划:将动态路径规划和静态路线生成相结合,生成最终的驾驶路线。 除此之外,Apollo Planning决策规划算法还包括计算机视觉、机器学习、深度学习和人工智能等技术,这些技术的综合应用使得Apollo Planning决策规划算法成为无人驾驶领域中应用最广泛的决策规划算法。 ### 回答2: Apollo Planning决策规划算法是一种用于自动驾驶系统的规划算法。该算法的主要作用是实时生成安全、有效且符合路况的路径以实现自动驾驶功能。本文将对该算法进行详细解析Apollo Planning决策规划算法主要包括三个步骤:路线规划、运动规划和决策规划。具体代码如下: 1. 路线规划 ```c++ bool Planning::PlanOnReferenceLine() { std::vector<const hdmap::HDMap*> hdmap_vec; hdmap_vec.reserve(1); if (!GetHdmapOnRouting(current_routing_, &hdmap_vec)) { AERROR << "Failed to get hdmap on current routing with " << current_routing_.ShortDebugString(); return false; } const auto& reference_line_info = reference_line_infos_.front(); std::vector<ReferencePoint> ref_points; if (!CreateReferenceLineInfo(hdmap_vec.front(), reference_line_info, &ref_points)) { AERROR << "Failed to create reference line from routing"; return false; } // Smooth reference line Spline2d smoothed_ref_line; std::vector<double> s_refs; std::vector<double> l_refs; std::vector<double> headings; std::vector<double> kappas; std::vector<double> dkappas; if (!SmoothReferenceLine(ref_points, &smoothed_ref_line, &s_refs, &l_refs, &headings, &kappas, &dkappas)) { AERROR << "Failed to smooth reference line"; return false; } reference_line_info.SetTrajectory(&smoothed_ref_line); reference_line_info.SetReferenceLine(&ref_points); // set origin point if (!reference_line_info.SLToXY(s_refs.front(), 0.0, &origin_point_)) { AERROR << "Failed to get origin point on reference line"; return false; } return true; } ``` 在路线规划阶段中,Apollo Planning决策规划算法首先获取当前行驶路线和高精度地图数据。然后根据行驶路线和地图数据构建参考线,对参考线进行平滑处理,得到平滑后的参考线。此时我们可以得到平滑后的参考线的位置、方向和曲率等信息,这些信息将作为后面的运动和决策规划的输入。 2. 运动规划 ```c++ bool Planning::PlanOnPrediction() { PredictionObstacles prediction_obstacles; if (!GetPrediction(&prediction_obstacles)) { AERROR << "Prediction failed"; return false; } std::vector<Obstacle> obstacles; if (!BuildObstacle(prediction_obstacles, &obstacles)) { AERROR << "Unable to build obstacle"; return false; } const auto& reference_line_info = reference_line_infos_.front(); const auto& reference_line = reference_line_info.reference_line(); SpeedData speed_data; Cruiser::PlanningTarget planning_target; Status status = cruiser_->Plan(reference_line_info, obstacles, 0.0, reference_line.Length(), &speed_data, &planning_target); if (status != Status::OK()) { AERROR << "Failed to plan path with status: " << status; return false; } RecordDebugInfo(reference_line_info, obstacles, speed_data); return true; } ``` 运动规划主要用于生成车辆在参考线上的运行轨迹。在运动规划阶段,Apollo Planning决策规划算法首先获取预测障碍物信息,将预测的障碍物转化为Obstacle对象。然后根据当前平滑后的参考线、障碍物等信息进行运动规划。运动规划的目标是生成符合规划目标的速度曲线。最后,Apollo Planning决策规划算法记录调试信息,以便后续分析调试。 3. 决策规划 ```c++ bool Planning::MakeDecision() { const auto& reference_line_info = reference_line_infos_.front(); const auto& reference_line = reference_line_info.reference_line(); std::vector<const Obstacle*> obstacles; if (!Obstacle::CreateObstacleRegions(FLAGS_max_distance_obstacle, reference_line_info, &obstacles)) { AERROR << "Failed to create obstacle regions"; return false; } for (auto obstacle_ptr : obstacles) { const auto& obstacle = *obstacle_ptr; if (obstacle.IsVirtual()) { continue; } if (obstacle.IsStatic()) { continue; } if (obstacle.type() == PerceptionObstacle::BICYCLE || obstacle.type() == PerceptionObstacle::PEDESTRIAN) { continue; } const auto& nearest_path_point = obstacle.nearest_point(); const SLPoint obstacle_sl = reference_line_info.xy_to_sl(nearest_path_point); if (obstacle_sl.s() < -FLAGS_max_distance_obstacle || obstacle_sl.s() > reference_line.Length() + FLAGS_max_distance_obstacle) { continue; } ObjectDecisionType decision; decision.mutable_avoid(); decision.mutable_avoid()->set_distance_s(-obstacle_sl.s()); reference_line_info.AddCost(&obstacle, &decision); } std::vector<ObjectDecisionType> decisions; if (!traffic_rule_manager_.ApplyRule(reference_line_info, &decisions)) { AERROR << "Failed to apply traffic rule manager"; return false; } reference_line_info.SetDecision(decisions); return true; } ``` 决策规划是基于当前环境信息和规划的路径等输入信息,实时生成控制命令的过程。在Apollo Planning决策规划算法中,决策规划阶段根据当前参考线、障碍物等信息生成决策。该算法根据不同的规则和策略,生成不同的控制命令,以保证车辆安全、有效地运行。 综上,Apollo Planning决策规划算法自动驾驶系统中重要的规划算法之一,它通过路线规划、运动规划和决策规划三个步骤,实现了安全、有效和符合路况的路径规划,为自动驾驶车辆的控制提供了重要的支持。 ### 回答3: Apollo Planning(阿波罗规划)是百度自动驾驶平台Apollo中的一种决策规划算法,主要用于规划车辆的驾驶行为。该算法基于深度强化学习,使用了运动学模型和环境感知技术,可以根据车辆当前位置和目的地,生成一条最优的行驶路径,包括车辆的控制指令和行驶速度等。 该算法的核心技术是深度强化学习,它通过对驾驶过程进行大量的仿真,让计算机通过自我学习得到驾驶规则,使车辆能够根据不同的场景做出最优的决策。具体而言,算法先通过神经网络生成一系列潜在的行动策略,然后通过与环境进行交互、执行行动并接收环境反馈来评估每个策略的优劣,最终选取最优策略进行执行。 在实现上,Apollo Planning算法主要由模块构成:感知模块、规划模块、执行模块和控制模块。感知模块主要用于获取车辆周围环境的信息,包括车辆位置、速度、道路情况、交通灯等;规划模块根据感知模块提供的信息和车辆的目的地,生成一条最优的行驶路径;执行模块则根据规划模块生成的路径信息,实现车辆的自主驾驶;控制模块则根据执行模块生成的控制指令,控制车辆的加速、刹车、转向等行为。 在算法实现上,Apollo Planning采用了C++编程语言,结合ROS框架实现各模块之间的数据交互和代码复用,保证了算法的高效性和可维护性。算法代码实现方面还采用了许多优化技术,包括多线程并发执行、高效的数据结构和算法等,以提升算法的运行效率和稳定性。 总之,Apollo Planning是一种基于深度强化学习的决策规划算法,具有高效、自主、可靠等特点,在智能驾驶领域具有广泛应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值