机器学习笔记——概率生成模型

本文探讨了机器学习中的概率生成模型,如何利用高斯分布对两类数据进行建模,并通过似然函数优化求得参数。在初始模型中,分类准确率为47%,随后通过改进模型,使得两类数据共享协方差,准确率提升至73%。总结了概率生成模型的三个步骤,并指出在数据量小和噪声点处理方面,生成模型的优势。
摘要由CSDN通过智能技术生成

    假设有两类数据,每一类都有若干个样本;概率生成模型认为每一类数据都服从某一种分布,如高斯分布;从两类训练数据中得到两个高斯分布的密度函数,具体的是获得均值和方差两个参数;测试样本输入到其中一个高斯分布函数,得到的概率值若大于0.5,则说明该样本属于该类,否则属于另一类。

    算法的核心在于获取分布函数的两个参数。具体的做法是:利用训练数据,构造似然函数,使得该似然函数最大的参数即为所求。事实上,一类数据的所有训练样本的均值和协方差即为所求。


得到其中一类的分布函数后,就可以对测试样本进行测试分类:



下图反映的是取样本的两个特征进行可视化的分类结果,可以看到只有47%的准确率。一个原

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值