深度学习笔记 常见的模型:受限玻尔兹曼机(RBM) 常见的模型: 受限玻尔兹曼机(RBM) 受限玻尔兹曼机(RBM)是一个随机神经网络(即当网络的神经元节点被激活时会有随机行为,随机取值,且一般为二值)。它包含一层可视层和一层隐藏层。在同一层的神经元之间是相互独立的,而在不同的网络层之间的神经元是相互连接的(双向连接)。在网络进行训练以及使用时信息会在两个方向上流动,而且两个方向上的权值是相同的。但是偏置值是不同的(偏置值的个数是和神经元的个数相同的)。 损失函数: 对比散度(CD): 用一个采样出来的样本来近似期望的计算。