论文笔记:深度学习方法的翼型设计及性能预测代理模型

该论文提出了一种基于深度学习方法的翼型设计和性能预测代理模型,采用DPCNN实现参数化设计和性能预测。通过Bezier-GAN进行机翼外形参数化,仅需3个几何参数即可生成精确的翼型轮廓,预测性能的相对误差小于2.5%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:《Airfoil design and surrogate modeling for performance prediction based on deep learning method》

论文来源:Physics of Fluids

论文作者:Qiuwan Du, Tianyuan Liu, Like Yang, etc.

DOI:10.1063/5.0075784

  • 基于深度学习方法建立了翼型设计与性能预测的DPCNN
  • 实现了机翼外形参数化、物理场预测和性能预测
  • 参数化方法Bezier- GAN
  • DPCNN仅需3个几何参数即可生成相当完美的翼型轮廓
  • 启动性能参数的相对误差小于2.5%
  • 参考文献推荐:11,22-26,29,32,33,35,40,41,42

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值