AAAI 2021
源代码
创新
- 没有引入图结构,而是把上下文embedding融入到实体embedding
- 提出自适应阈值损失,而非设定死板的全局阈值
编码器
还是使用基础的bert,但是在扔进bert之前,对文档中的实体提及前后加以 * 标记
对于每个实体,因为有好多个提及,把他们编码后的embedding,使用logsumexp pooling,得到实体的embedding表示。
获取一对实体的embedding以后,分别送入线性层,tanh再激活一下,二者一起送入全连接层,用sigmoid计算各个关系的概率。
下面这个公式,作者做了改进,在这里引入了局部上下文embedding,在后面进行介绍。
训练的时候用bce loss,预测的时候,设定了全局阈值,超过就认为存在关系r。
自适应阈值
作者紧接着说,全局阈值不靠谱,因为不同实体对,不同关系,不能一概而论。