【论文阅读】Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling

这篇论文提出了在不使用图结构的情况下,通过自适应阈值和局部上下文池化来改进文档级关系抽取。文中介绍了如何通过标记实体提及和使用logsumexp pooling来构建实体embedding。作者还提出了自适应阈值损失函数,以适应不同实体对和关系的阈值。此外,局部上下文池化关注与实体关系相关的上下文,利用BERT的注意力头提取有用信息,增强实体对的表示。
摘要由CSDN通过智能技术生成

AAAI 2021
源代码

创新

  1. 没有引入图结构,而是把上下文embedding融入到实体embedding
  2. 提出自适应阈值损失,而非设定死板的全局阈值

编码器

还是使用基础的bert,但是在扔进bert之前,对文档中的实体提及前后加以 * 标记

对于每个实体,因为有好多个提及,把他们编码后的embedding,使用logsumexp pooling,得到实体的embedding表示。

获取一对实体的embedding以后,分别送入线性层,tanh再激活一下,二者一起送入全连接层,用sigmoid计算各个关系的概率。

下面这个公式,作者做了改进,在这里引入了局部上下文embedding,在后面进行介绍。
在这里插入图片描述
训练的时候用bce loss,预测的时候,设定了全局阈值,超过就认为存在关系r。

自适应阈值

作者紧接着说,全局阈值不靠谱,因为不同实体对,不同关系,不能一概而论。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值