【论文阅读】Named Entity Recognition in the Style of Object Detection

该博客介绍了如何将目标检测的思想应用于命名实体识别(NER)任务,通过预测实体区域和分类来实现。模型结构包括预测实体的开始和结束、实体分类,并在训练时采用特定策略增强模型的鲁棒性。在推理阶段,根据概率阈值判断实体并分类。
摘要由CSDN通过智能技术生成

来自微软
作者没有贴代码链接

借用了计算机视觉中两阶段目标检测的思想它们如何构造损失函数的方法。

模型架构

1. 预测实体区域

在这里插入图片描述
预测实体的开始和结尾。

结构很简单,bert出来一个线性层,预测开始和结尾。使用的交叉熵损失。

作者对预测的过长实体直接丢弃,并在论文里对丢弃的实体道歉?

2. 实体分类

仍然用的bert,这阶段有2个任务:

  • 实体损失
  • 实体类型分类损失

在这里插入图片描述
α \alpha

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值