https://arxiv.org/pdf/2106.09895
先指出TPLinker存在的问题:为了避免曝光偏差,它利用了相当复杂的解码器,导致了稀疏的标签,关系冗余,基于span的提取能力差
作者提出新的模型,包括三部分:
- Potential Relation Prediction
- Relation-Specific Sequence Tagging
- Global Correspondence
对于主客体对齐,设计了一个关系无关的全局对应矩阵,用于确定特定的主客体。
给定一个句子,模型先预测一个可能存在关系的子集,以及得到一个全局矩阵。
然后执行序列标注,标注存在的主体客体。
最后枚举所有实体对,由全局矩阵裁剪。
尽管它引入了通常提到的曝光偏差,但是仍有优越性。

编码器
bert
Potential Relation Prediction预测关系
首先预测潜在关系的子集,只需要从这些潜在实体里提取子集。
给定embedding h,潜在关系预测模块如下:

本文针对TPLinker存在的复杂解码器问题,提出PRGC模型,包括潜在关系预测、关系特异性序列标注和全局对应三个部分。模型先预测潜在关系,再进行序列标注,最后通过全局矩阵确定正确实体对,有效地处理了实体重叠问题,并通过联合训练优化。
最低0.47元/天 解锁文章
850

被折叠的 条评论
为什么被折叠?



