【阅读】A FRAMEWORK TO IMPLEMENT 1+N MULTI-TASK FINE-TUNINGPATTERN IN LLMS USING THE CGC-LORA ALGORITHM

总体概要

本文提出了一种名为CGC-LoRA的框架,用于在大型语言模型(LLMs)中实现1+N多任务微调模式,旨在解决传统微调方法中存在的高计算成本和任务间知识隔离问题。CGC-LoRA结合了多任务学习(MTL)和参数高效微调(PEFT)的优势,通过引入定制化门控控制(CGC)和低秩适应(LoRA)算法,实现了对LLMs的微调,使其能够适应多个未见任务集群。该框架通过将任务分为多个集群,并对每个集群应用多任务版本的LoRA微调算法,使得一个中央LLM能够通过一系列可插拔的LoRA模块轻松处理来自不同领域的多样化任务。实验结果表明,CGC-LoRA在多个公共数据集上优于现有基准,证明了其在多任务场景下的有效性和效率。

核心要点
  1. 多任务学习与参数高效微调的结合

    • 提出了一个框架,实现了大型语言模型(LLMs)中的1+N多任务微调模式,该框架利用了定制门控控制(CGC)低秩适应(LoRA)算法,旨在同时解决高计算成本和多任务间的权衡问题。
  2. CGC-LoRA模块的设计

    • CGC-LoRA模块通过引入任务通用专家和任务特定专家,有效地捕获跨任务共享知识和特定任务信息,同时通过任务激励门控函数动态调整两类专家对不同任务的贡献。
  3. 实验验证

    • 在两个公开的多任务数据集PromptCBLUE和Firefly上进行了全面的实验,结果表明,采用CGC-LoRA模块的框架在各项评估指标上均优于现有的基准方法。
  4. 任务聚类的重要性

    • 强调了根据专业知识或任务间亲和力对任务进行聚类的重要性,这有助于提高模型的泛化能力和效率。
  5. 输入输出处理的定制化

    • 描述了如何对输入输出数据进行定制化处理,以适应LLMs的文本模式,包括辅助指令模板的使用和目标实体的整合。
  6. 问题定义与初步解决方案

    • 明确了多任务微调面临的主要问题,即多样化的任务影响和高计算成本,并提出了一种初步的解决方案,即通过CGC-LoRA模块实现任务间知识的有效共享和参数的高效利用。
  7. 超参数分析与优化

    • 进行了超参数分析,探讨了任务通用专家数量和专家矩阵秩对模型性能的影响,指出了在特定设置下的最优性能。
  8. 相关工作的回顾

    • 回顾了多任务学习和参数高效微调领域的相关工作,强调了本研究在结合这两个领域方面的创新和贡献。

段落概要

Introduction

本文介绍了大型语言模型(LLMs)在多个领域的应用进展,如机器翻译、多语言学习、多模态操作、推荐系统和推理能力。尽管LLMs在通用数据上预训练后展现出强大的零/少样本学习能力,但针对特定领域的微调仍是提升性能的有效手段。文章指出,微调LLMs面临两大挑战:多样任务影响(Various Task Impact)和高计算成本(High Computing Cost)。为解决这些问题,提出了结合多任务学习(MTL)和参数高效微调(PEFT)的框架,通过将任务分群和应用LoRA微调算法,实现对LLMs的1+N多任务微调模式,以提高模型在多个任务上的性能和效率。

Preliminary

文章的“Preliminary”部分概述了如何将大型语言模型(LLMs)应用于多领域任务的框架,并详细介绍了输入和输出的处理方式。核心要点包括:提出了一个实现1+N多任务微调模式的通用框架,该框架通过LoRA微调算法使中央LLM适应多个任务集群;输入处理涉及附加指导模板以引导LLM完成任务,输出处理则将目标实体整合进语言文本;整个流程确保了预训练LLM能够直接处理纯语言数据,并通过微调生成符合任务要求的回答。这一框架为LLM在广泛应用中提供了有效和高效的多任务处理能力。

Problem Formulation

文章的“问题公式化”部分核心要点是:针对多领域任务需求,旨在微调一个预训练的大型语言模型(LLM),以在包含多个子任务的各领域中表现出色。通过给定的输入输出数据对,优化LLM参数,采用条件语言建模目标,并在多任务场景下同时训练所有样本,以促进任务间信息共享。

CGC-LoRA

CGC-LoRA是一种结合了Customized Gate Control(CGC)和Low-rank Adaptation(LoRA)策略的创新网络层,旨在解决多任务学习中知识共享与特定任务信息提取的平衡问题。它通过引入任务共同专家和任务特定专家两种类型的网络,以及一个基于任务ID而非输入样本的任务激励门控函数,来优化大型语言模型(LLMs)在多任务场景下的微调过程。CGC-LoRA不仅继承了LoRA算法的效率和有效性,还通过其独特的门控机制,实现了在不同任务间高效的信息流通,同时减少了推理延迟。实验证明,CGC-LoRA在多个公共多任务数据集上表现出色,证明了其在多任务学习领域的有效性和优越性。

Experiments

文章的“Experiments”部分通过在两个公开的多任务数据集上进行精心设计的实验,验证了提出的CGC-LoRA结构的有效性。实验结果表明,CGC-LoRA在多个任务上持续超越了包括未微调的LLM、LoRA微调的LLM以及多任务LoRA微调的LLM在内的所有基准方法,并在两个不同数据集上实现了最稳健的性能。此外,通过消融研究和超参数分析,进一步证明了CGC-LoRA结构中每个组件的有效性和必要性,以及特定优化模式的重要性。这些实验结果不仅展示了CGC-LoRA在自然语言处理广泛应用中的有效性、效率和鲁棒性,而且强调了在多任务学习中合理共享知识的重要性。

Related Works

文章的"Related Works"部分回顾了多任务学习(MTL)和参数高效微调(PEFT)两个研究领域,指出这些方法旨在解决大型语言模型(LLMs)在多任务场景下的挑战,如任务冲突和信息转移问题。MTL方法如硬参数共享、交叉编织网络、多门混合专家网络(MMOE)和渐进层提取(PLE)等,通过不同的知识融合策略提高学习效率。PEFT方法如适配器调优、前缀调优和LoRA等,通过更新部分参数而非全部参数来降低计算成本,同时保持模型性能。文章提出的CGC-LoRA框架旨在整合MTL和PEFT的优势,实现LLMs在多任务环境下的高效微调。

Conclusion

文章的结论部分主要强调了结合参数高效微调(PEFT)方法(如LoRA算法)和多任务学习(MTL)策略(如CGC网络)的重要性。作者提出了一种通用框架,实现了在大型语言模型(LLMs)中采用1+N多任务微调模式。该框架首先根据专业先验信息或任务间亲和性将多种任务分组为N个集群,然后通过CGC-LoRA模块对预训练的中心LLM进行微调,以处理这些任务集群。CGC-LoRA模块包含任务通用和任务特定专家,能够提取和处理跨任务的通用和特定知识,并通过任务驱动的门函数决定两类专家对给定任务的贡献。由于门函数仅由任务ID驱动,所有专家的参数可以统一表示。此外,CGC-LoRA继承了PEFT方法的优点,提供了一种高效的方式,使得预训练的LLM可以通过少量额外可训练参数进行微调。通过在两个公共数据集上的综合实验,证明了CGC-LoRA模块的有效性和效率。未来,作者计划进一步探索在更高多样性的MTL案例中实施该框架的可行性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值